Project description:Several recent publications have described myopericarditis cases after the coronavirus disease 2019 (COVID-19) vaccination. However, it is uncertain if these cases occurred secondary to the vaccination or more common etiologies of myopericarditis. To help determine whether a correlation exists between COVID-19 vaccination and myopericarditis, the present study compared the gender-specific cumulative incidence of myopericarditis and myocardial injury in a cohort of COVID-19 vaccinated patients at a tertiary care center in 2021 with the cumulative incidence of these conditions in the same subjects exactly 2 years earlier. We found that the age-adjusted incidence rate of myopericarditis in men was higher in the vaccinated than the control population, rate ratio 9.7 (p = 0.04). However, the age-adjusted incidence rate of myopericarditis in women was no different between the vaccinated and control populations, rate ratio 1.28 (p = 0.71). We further found that the rate of myocardial injury was higher in both men and women in 2021 than in 2019 both before and after vaccination, suggesting that some of the apparent increase in the diagnosis of myopericarditis after vaccination may be attributable to factors unrelated to the COVID-19 vaccinations. In conclusion, our study reaffirms the apparent increase in the diagnosis of myopericarditis after COVID-19 vaccination in men but not in women, although this finding may be confounded by increased rates of myocardial injury in 2021. The benefits of COVID-19 vaccination to individual and public health clearly outweigh the small potential increased risk of myopericarditis after vaccination.
Project description:BackgroundThe clinical significance of Coronavirus disease 2019 (COVID-19) as an associate of myocardial injury is controversial.HypothesisType 2 MI/Myocardial Injury are associated with worse outcomes if complicated by COVID-19.MethodsThis longitudinal cohort study involved consecutive patients admitted to a large urban hospital. Myocardial injury was determined using laboratory records as ≥1 hs-TnI result >99th percentile (male: >34 ng/L; female: >16 ng/L). Endotypes were defined according to the Fourth Universal Definition of Myocardial Infarction (MI) and COVID-19 determined using PCR. Outcomes of patients with myocardial injury with and without COVID-19 were assessed.ResultsOf 346 hospitalized patients with elevated hs-TnI, 35 (10.1%) had laboratory-confirmed COVID-19 (median age [IQR]; 65 [59-74]; 64.8% male vs. COVID-19 negative: 74 [63-83] years; 43.7% male). Cardiac endotypes by COVID-19 status (yes vs. no) were: Type 1 MI (0 [0%] vs. 115 [100%]; p < .0005), Type 2 MI (13 [16.5%] vs. 66 [83.5%]; p = .045), and non-ischemic myocardial injury (cardiac: 4 [5.8%] vs. 65 [94.2%]; p = .191, non-cardiac:19 [22.9%] vs. 64 [77.%]; p < .0005). COVID-19 patients had less comorbidity (median [IQR] Charlson Comorbidity Index: 3.0 [3.0] vs. 5.0 [4.0]; p = .001), similar hs-TnI concentrations (median [IQR] initial: 46 [113] vs. 62 [138]; p = .199, peak: 122 [474] vs. 79 [220] ng/L; p = .564), longer admission (days) (median [IQR]: 14[19] vs. 6[12]; p = .001) and higher in-hospital mortality (63.9% vs. 11.3%; OR = 13.2; 95%CI: 5.90, 29.7).ConclusionsCardiac sequelae of COVID-19 typically manifest as Non-cardiac myocardial injury/Type 2MI in younger patients with less co-morbidity. Paradoxically, the admission duration and in-hospital mortality are increased.
Project description:AimsIn patients with coronavirus disease 2019 (COVID-19), the involvement of the cardiovascular system significantly relates to poor prognosis. However, the risk factors for acute myocardial injury have not been sufficiently studied. Thus, we aimed to determine the characteristics of myocardial injury and define the association between routine blood markers and cardiac troponin I, in order to perform a predictive model.Methods and resultsThis retrospective cohort study included patients with confirmed COVID-19 from Wuhan Tongji Hospital (Wuhan, China). Data were compared between those with and without myocardial injury. Kaplan-Meier analysis and Cox regression models were used to describe the association between myocardial injury and poor prognosis. Simple correlation analyses were used to find factors associated with high-sensitivity cardiac troponin I levels. Univariate and multivariate logistic regression methods were used to explore the risk factors associated with myocardial injury. The area under the receiver operating characteristic curve was used to determine the predictive value of the model. Of 353 patients included in the study, 79 presented myocardial injury. Patients with myocardial injury had higher levels of inflammation markers, poorer liver and kidney function, and more complications compared with patients without myocardial injury. High-sensitivity cardiac troponin I levels were significantly associated with neutrophil/lymphocyte ratio, creatinine, d-dimer, lactate dehydrogenase, and inflammatory cytokines and negatively associated with oxygen saturation. It was significantly associated with poor prognosis after adjusting for age, sex, and complications. Multivariate regression showed that myocardial injury was associated with a high neutrophil/lymphocyte ratio (odds ratio 2.30, 95% CI 1.11-4.75, per standard deviation increase, P = 0.02), creatinine (3.58, 1.35-8.06, P = 0.01), and lactate dehydrogenase (3.39, 1.42-8.06, P = 0.01) levels. Using a predictive model, the area under the receiver operating characteristic curve was 0.92 (0.88-0.96).ConclusionsIn patients with COVID-19, neutrophil/lymphocyte ratio, creatinine, and lactate dehydrogenase are blood markers that could help identify patients with a high risk of myocardial injury at an early stage.
Project description:ObjectivesCoronavirus disease 2019 is caused by the novel severe acute respiratory syndrome coronavirus 2 virus. Patients admitted to the ICU suffer from microvascular thrombosis, which may contribute to mortality. Our aim was to profile plasma thrombotic factors and endothelial injury markers in critically ill coronavirus disease 2019 ICU patients to help understand their thrombotic mechanisms.DesignDaily blood coagulation and thrombotic factor profiling with immunoassays and in vitro experiments on human pulmonary microvascular endothelial cells.SettingTertiary care ICU and academic laboratory.SubjectsAll patients admitted to the ICU suspected of being infected with severe acute respiratory syndrome coronavirus 2, using standardized hospital screening methodologies, had daily blood samples collected until testing was confirmed coronavirus disease 2019 negative on either ICU day 3 or ICU day 7 if the patient was coronavirus disease 2019 positive.InterventionsNone.Measurement and main resultsAge- and sex-matched healthy control subjects and ICU patients that were either coronavirus disease 2019 positive or coronavirus disease 2019 negative were enrolled. Cohorts were well balanced with the exception that coronavirus disease 2019 positive patients were more likely than coronavirus disease 2019 negative patients to suffer bilateral pneumonia. Mortality rate for coronavirus disease 2019 positive ICU patients was 40%. Compared with healthy control subjects, coronavirus disease 2019 positive patients had higher plasma von Willebrand factor (p < 0.001) and glycocalyx-degradation products (chondroitin sulfate and syndecan-1; p < 0.01). When compared with coronavirus disease 2019 negative patients, coronavirus disease 2019 positive patients had persistently higher soluble P-selectin, hyaluronic acid, and syndecan-1 (p < 0.05), particularly on ICU day 3 and thereafter. Thrombosis profiling on ICU days 1-3 predicted coronavirus disease 2019 status with 85% accuracy and patient mortality with 86% accuracy. Surface hyaluronic acid removal from human pulmonary microvascular endothelial cells with hyaluronidase treatment resulted in depressed nitric oxide, an instigating mechanism for platelet adhesion to the microvascular endothelium.ConclusionsThrombosis profiling identified endothelial activation and glycocalyx degradation in coronavirus disease 2019 positive patients. Our data suggest that medications to protect and/or restore the endothelial glycocalyx, as well as platelet inhibitors, should be considered for further study.
Project description:ObjectiveTo investigate the risk factors for acute myocardial injury in coronavirus disease 2019 (COVID-19) patients.MethodsThis is a retrospective analysis of a COVID-19 cohort, in which 149 confirmed COVID-19 patients enrolled were divided into the group of myocardial injury (19 cases) and the group of non-myocardial injury (130 cases). Myocardial injury was defined according to Fourth universal definition of myocardial infarction released by European Society of Cardiology (ESC) in 2018, that cardiac troponin (cTn) was above 99th percentile of the reference level. Clinical information and results of laboratory tests of the eligible patients were collected. Factors associated with myocardial injury in COVID-19 patients were evaluated.ResultsCompared with the group of non-injury, the patients in the group of injury were older and had a larger proportion of severe or critical cases (P < 0.05), higher respiratory rate and lower percutaneous oxygen saturation (SpO2) without oxygen therapy on admission (P < 0.05). All inflammatory indexes except for tumor necrosis factor α (TNF-α) showed significant elevation in the patients of the group of injury (P < 0.05). Analyzed by Spearman correlation test, we showed that the levels of circulatory cTnI were in positive correlation with the levels of high-sensitivity C-reactive protein (hs-CRP), ferritin, receptor of interleukin-2 (IL-2R), interleukin-6 (IL-6) and interleukin-8 (IL-8) (ρ > 0, P < 0.05). Lower SpO2 without oxygen therapy on admission (OR: 0.860, 95%CI: 0.779-0.949, P=0.003) and higher plasma IL-6 levels (OR: 1.068, 95%CI: 1.019-1.120, P=0.006) were independent risk factors for acute myocardial injury in the patients with COVID-19 by multivariate Logistic regression analyses.ConclusionHypoxic state and inflammation may play a key role in the pathogenesis of acute myocardial injury in COVID-19 patients.
Project description:Coronavirus disease 2019 (COVID-19) can become complicated by secondary invasive fungal infections (IFIs), stemming primarily from severe lung damage and immunologic deficits associated with the virus or immunomodulatory therapy. Other risk factors include poorly controlled diabetes, structural lung disease and/or other comorbidities, and fungal colonization. Opportunistic IFI following severe respiratory viral illness has been increasingly recognized, most notably with severe influenza. There have been many reports of fungal infections associated with COVID-19, initially predominated by pulmonary aspergillosis, but with recent emergence of mucormycosis, candidiasis, and endemic mycoses. These infections can be challenging to diagnose and are associated with poor outcomes. The reported incidence of IFI has varied, often related to heterogeneity in patient populations, surveillance protocols, and definitions used for classification of fungal infections. Herein, we review IFI complicating COVID-19 and address knowledge gaps related to epidemiology, diagnosis, and management of COVID-19-associated fungal infections.
Project description:Objective: To study the potential effect of COVID-19 on the endometrium of affected symptomatic women. Design: Preliminary study of the endometrial transcriptomes in women with COVID-19 through RNA sequencing. Setting: Hospital and university laboratories. Subjects: Women with COVID-19 lacking SARS-CoV-2 infection in endometrial tissue. Intervention/Exposure: Endometrial biopsy collection. Main outcomes measures: Endometrial gene expression and functional analysis of patients with COVID-19 versus uninfected individuals. Results: COVID-19 systemic disease alters endometrial gene expression in 75% of women, with patients exhibiting a preponderance of 163 up-regulated (e.g., UTS2, IFI6, IFIH1, BNIP3) and 72 down-regulated genes (e.g., CPZ, CDH3, IRF4) (FDR<0.05). A total of 161 dysregulated functions (36 up-regulated and 125 down-regulated) were typically enriched in COVID-19 endometria, including upregulation in pathways involved in response to virus and cytokine inflammation, highlighting upregulation of a COVID-19 response pathway. Conclusion: COVID-19 affects endometrial gene expression despite the absence of SARS-CoV-2 particles in endometrial tissues.
Project description:Since the outbreak of Coronavirus Disease 2019 (COVID-19) in Wuhan, China, in December of 2019, it has rapidly become a global pandemic. Although acute respiratory disorder is the main manifestation of COVID-19, acute kidney injury (AKI) is another important extrapulmonary complication, which has a critical impact on the prognosis and mortality of patients. Current understanding about the exact pathogenesis of AKI in COVID-19 is unclear. Several studies have suggested that intrarenal, pre-renal and post-renal factors mediated collaboratively by direct virus attack, overloaded immune responses, drugs, sepsis, coagulation dysfunction, and underlying diseases may all be involved in the pathogenesis of AKI. This article reviews the current understanding of the pathogenesis of AKI in COVID-19.
Project description:BackgroundThe 2019 novel coronavirus disease (CO-VID-19) is a newly defined serious infectious disease caused by the SARS-CoV-2 virus. The epidemic started in Wuhan, China, in December of 2019 and quickly spread to over 200 countries. It has affected 4,258,666 people, with 294,190 deaths worldwide by May 15, 2020. COVID-19 is characterized by acute respiratory disease, with 80% of patients presenting mild like flu-like symptoms; however, 20% of patients may have a severe or critical clinical presentation, which likely causes multiple organ injuries (e.g., kidney, heart, blood, and nervous system). Among them, acute kidney injury (AKI) is a critical complication due to its high incidence and mortality rate. Here we present a review of the current understanding of AKI in COVID-19.SummaryCO-VID-19 is a catastrophic contagious disease caused by the coronavirus, and the AKI induced by COVID-19 significantly increases the mortality rate. In this review, we summarize the clinical characteristics of COVID-19 induced AKI by focusing on its epidemiology, pathogenesis, clinical diagnosis, and treatment.Key messagesMultiple studies have shown that COVID-19 may involve the kidneys and cause AKI. This article reviews the characteristics of COVID-19-induced AKI largely based on up-to-date studies in the hope that it will be helpful in the current global fight against and treatment of COVID-19.