Transcriptomic Response under Heat Stress in Chickens Revealed the Regulation of Genes and Alteration of Metabolism to Maintain Homeostasis.
Ontology highlight
ABSTRACT: Chicken is important livestock that serves as a vital food source which remain largely affected by heat stress. Therefore, we performed the transcriptome analysis to help understand the mechanisms of heat stress response in chickens. In the animal experiments, we grouped them into a normal and severe at 21 and 33 °C, with identified physiologic parameters for 2-weeks. Subsequently, RNA-seq analysis was performed to identify DEGs with a false discovery rate < 0.05 and a fold change ≥ 1.5. In the physiological parameters, we observed average daily gain was declined, rectal temperature and respiration rate was increased in severe group. Among total 245 DEGs, 230 and 15 genes were upregulated and downregulated, respectively. In upregulated DEGs, HSPs, MYLK2, and BDKRB1 genes were identified as key genes in heat stress. The KEGG pathway analysis showed involvement in the ATP metabolic process, MAPK signaling pathway and calcium signaling pathway with related protein processing and synthesis. In conclusion, with induced heat stress, such changes in physiologic parameters alter the neuroendocrine system, and we observed that the heat stress environment regulates such Heat shock protein genes to protect the cells and proteins from an altered metabolism. These findings provide a more comprehensive understanding of the heat stress response in poultry.
SUBMITTER: Kim H
PROVIDER: S-EPMC8388523 | biostudies-literature |
REPOSITORIES: biostudies-literature
ACCESS DATA