Project description:Recent work has shown that it is possible to target regulatory elements to DNA sequences of an investigator's choosing, increasing the armamentarium for probing gene function. In this review, we discuss the development and use of designer zinc finger proteins (ZFPs) as sequence specific tools. While the main focus of this review is to discuss the attachment of the FokI nuclease to ZFPs and the ability of the resulting fusion protein (termed zinc finger nucleases (ZFNs)) to genomically manipulate a gene of interest, we will also cover the utility of other functional domains, such as transcriptional activators and repressors, and highlight how these are being used as discovery and therapeutic tools.
Project description:When SARS-CoV-2 emerged at the end of 2019, no approved therapeutics or vaccines were available. An urgent need for countermeasures during this crisis challenges the current paradigm of traditional drug discovery and development, which usually takes years from start to finish. Approaches that accelerate this process need to be considered. Here we propose the minimum data package required to move a compound into clinical development safely. We further define the additional data that should be collected in parallel without impacting the rapid path to clinical development. Accelerated paths for antivirals, immunomodulators, anticoagulants, and other agents have been developed and can serve as "roadmaps" to support prioritization of compounds for clinical testing. These accelerated paths are fueled by a skewed risk-benefit ratio and are necessary to advance therapeutic agents into human trials rapidly and safely for COVID-19. Such paths are adaptable to other potential future pandemics.
Project description:The SARS-CoV-2 virus has caused already over 3.5 million COVID-19 cases and 250,000 deaths globally. There is an urgent need to create novel models to study SARS-CoV-2 using human disease-relevant cells to understand key features of virus biology and facilitate drug screening. As primary SARS-CoV-2 infection is respiratory-based, we developed a lung organoid model using human pluripotent stem cells (hPSCs) that could be adapted for drug screens.
Project description:Novel coronavirus (COVID-19 or 2019-nCoV or SARS-CoV-2), which suddenly emerged in December 2019 is still haunting the entire human race and has affected not only the healthcare system but also the global socioeconomic balances. COVID-19 was quickly designated as a global pandemic by the World Health Organization as there have been about 98.0 million confirmed cases and about 2.0 million confirmed deaths, as of January 2021. Although, our understanding of COVID-19 has significantly increased since its outbreak, and multiple treatment approaches and pharmacological interventions have been tested or are currently under development to mitigate its risk-factors. Recently, some vaccine candidates showed around 95% clinical efficacy, and now receiving emergency use approvals in different countries. US FDA recently approved BNT162 and mRNA-1273 vaccines developed by Pfizer/BioNTech and Moderna Inc. for emergency use and vaccination in the USA. In this review, we present a succinct overview of the SARS-CoV-2 virus structure, molecular mechanisms of infection, COVID-19 epidemiology, diagnosis, and clinical manifestations. We also systematize different treatment strategies and clinical trials initiated after the pandemic outbreak, based on viral infection and replication mechanisms. Additionally, we reviewed the novel pharmacological intervention approaches and vaccine development strategies against COVID-19. We speculate that the current pandemic emergency will trigger detailed studies of coronaviruses, their mechanism of infection, development of systematic drug repurposing approaches, and novel drug discoveries for current and future pandemic outbreaks.
Project description:BackgroundWhile Molnupiravir and Paxlovid have recently been approved for use in some countries, there are no widely available treatments for COVID-19, the disease caused by SARS-CoV-2 infection. Herbal extracts have been used to treat respiratory clinical indications by Ayurvedic medicine practitioners with minimal adverse reactions and intense research efforts are currently under way to develop some of these formulations for COVID-19 treatment.MethodsLiterature search for in silico, in vitro, in vivo, and clinical studies on the topic of Ayurvedic formulations for potential COVID-19 treatment, in order to present the current state of current knowledge by integrating information across all systems.ResultsThe search yielded 20 peer reviewed articles on in silico studies examining the interaction of phytoconstituents of popular Ayurvedic formulations with SARS-CoV-2 components and its receptors; five articles on preclinical investigations of the ability of selected Ayurvedic formulations to inhibit functions of SARS-CoV-2 proteins; and 51 completed clinical trials on the efficacy of using Ayurvedic formulations for treatment of mild to moderate COVID-19. Clinical data was available from 17 of the 51 trials. There was a considerable overlap between formulations used in the in silico studies and the clinical trials. This finding was unexpected as there is no clearly stated alignment between studies and the traditional pathway to drug discovery- basic discovery leading to in vitro and in vivo proof of concept, followed by validation in clinical trials. This was further demonstrated in the majority of the in silico studies where focus was on potential antiviral mechanisms, while the clinical trials were focused on patient recovery using oral treatments. In all 17 clinical trials where data was available, Ayurvedic treatments lead to a shorter period to recovery in participants with COVID-19.ConclusionThe most commonly used Ayurvedic treatments for management of respiratory symptoms associated with SARS-CoV-2 infection appear to have prophylactic and/or therapeutic properties. It would be of particular interest to assess synergistic and concomitant systemic effects and antiviral activities of individual phytoconstituents and their combinations in the Ayurvedic treatments.
Project description:The emergence of SARS-CoV-2 and subsequent COVID-19 pandemic has resulted in a significant global public health burden, leading to an urgent need for effective therapeutic strategies. In this article, we review the role of SARS-CoV-2 neutralizing antibodies (nAbs) in the clinical management of COVID-19 and provide an overview of recent randomized controlled trial data evaluating nAbs in the ambulatory, hospitalized and prophylaxis settings. Two nAb cocktails (casirivimab/imdevimab and bamlanivimab/etesevimab) and one nAb monotherapy (bamlanivimab) have been granted Emergency Use Authorization by the US Food and Drug Administration for the treatment of ambulatory patients who have a high risk of progressing to severe disease, and the European Medicines Agency has similarly recommended both cocktails and bamlanivimab monotherapy for use in COVID-19 patients who do not require supplemental oxygen and who are at high risk of progressing to severe COVID-19. Efficacy of nAbs in hospitalized patients with COVID-19 has been varied, potentially highlighting the challenges of antiviral treatment in patients who have already progressed to severe disease. However, early data suggest a promising prophylactic role for nAbs in providing effective COVID-19 protection. We also review the risk of treatment-emergent antiviral resistant "escape" mutants and strategies to minimize their occurrence, discuss the susceptibility of newly emerging SARS-COV-2 variants to nAbs, as well as explore administration challenges and ways to improve patient access.
Project description:Phospholipase A2 (PLA2) enzymes are involved in various inflammatory pathological conditions including arthritis, cardiovascular and autoimmune diseases. The regulation of their catalytic activity is of high importance and a great effort has been devoted in developing synthetic inhibitors. We summarize the most important small-molecule synthetic PLA2 inhibitors developed to target each one of the four major types of human PLA2 (cytosolic cPLA2, calcium-independent iPLA2, secreted sPLA2, and lipoprotein-associated LpPLA2). We discuss recent applications of inhibitors to understand the role of each PLA2 type and their therapeutic potential. Potent and selective PLA2 inhibitors have been developed. Although some of them have been evaluated in clinical trials, none reached the market yet. Apart from their importance as potential medicinal agents, PLA2 inhibitors are excellent tools to unveil the role that each PLA2 type plays in cells and in vivo. Modern medicinal chemistry approaches are expected to generate improved PLA2 inhibitors as new agents to treat inflammatory diseases.
Project description:Since its inception in late December 2020 in China, novel coronavirus has affected the global socio-economic aspect. Currently, the world is seeking safe and effective treatment measures against COVID-19 to eradicate it. Many established drug molecules are tested against SARS-CoV-2 as a part of drug repurposing where some are proved effective for symptomatic relief while some are ineffective. Drug repurposing is a practical strategy for rapidly developing antiviral agents. Many drugs are presently being repurposed utilizing basic understanding of disease pathogenesis and drug pharmacodynamics, as well as computational methods. In the present situation, drug repurposing could be viewed as a new treatment option for COVID-19. Several new drug molecules and biologics are engineered against SARS-CoV-2 and are under different stages of clinical development. A few biologics drug products are approved by USFDA for emergency use in the covid management. Due to continuous mutation, many of the approved vaccines are not much efficacious to render the individual immune against opportunistic infection of SARS-CoV-2 mutants. Hence, there is a strong need for the cogent therapeutic agent for covid management. In this review, a consolidated summary of the therapeutic developments against SARS-CoV-2 are depicted along with an overview of effective management of post COVID-19 complications.
Project description:Cytokines have pivotal roles in immunity, making them attractive as therapeutics for a variety of immune-related disorders. However, the widespread clinical use of cytokines has been limited by their short blood half-lives and severe side effects caused by low specificity and unfavourable biodistribution. Innovations in bioengineering have aided in advancing our knowledge of cytokine biology and yielded new technologies for cytokine engineering. In this Review, we discuss how the development of bioanalytical methods, such as sequencing and high-resolution imaging combined with genetic techniques, have facilitated a better understanding of cytokine biology. We then present an overview of therapeutics arising from cytokine re-engineering, targeting and delivery, mRNA therapeutics and cell therapy. We also highlight the application of these strategies to adjust the immunological imbalance in different immune-mediated disorders, including cancer, infection and autoimmune diseases. Finally, we look ahead to the hurdles that must be overcome before cytokine therapeutics can live up to their full potential.