Project description:The ongoing SARS-CoV-2 pandemic continues to pose an enormous health challenge globally. The ongoing emergence of variants of concern has resulted in decreased vaccine efficacy necessitating booster immunizations. This was particularly highlighted by the recent emergence of the Omicron variant, which contains over 30 mutations in the spike protein and quickly became the dominant viral strain in global circulation. We previously demonstrated that delivery of a SARS-CoV-2 subunit vaccine via a high-density microarray patch (HD-MAP) induced potent immunity resulting in robust protection from SARS-CoV-2 challenge in mice. Here we show that serum from HD-MAP immunized animals maintained potent neutralisation against all variants tested, including Delta and Omicron. These findings highlight the advantages of HD-MAP vaccine delivery in inducing high levels of neutralising antibodies and demonstrates its potential at providing protection from emerging viral variants.
Project description:Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) variants of concern have emerged and may pose a threat to both the efficacy of vaccines based on the original WA1/2020 strain and the natural immunity induced by infection with earlier SARS-CoV-2 variants. We investigated how mutations in the spike protein of circulating SARS-CoV-2 variants, which have been shown to partially evade neutralizing antibodies, affect natural and vaccine-induced immunity. We adapted a Syrian hamster model of moderate to severe clinical disease for two variant strains of SARS-CoV-2: B.1.1.7 (alpha variant) and B.1.351 (beta variant). We then assessed the protective efficacy conferred by either natural immunity from WA1/2020 infection or by vaccination with a single dose of the adenovirus serotype 26 vaccine, Ad26.COV2.S. Primary infection with the WA1/2020 strain provided potent protection against weight loss and viral replication in lungs after rechallenge with WA1/2020, B.1.1.7, or B.1.351. Ad26.COV2.S induced cross-reactive binding and neutralizing antibodies that were reduced against the B.1.351 strain compared with WA1/2020 but nevertheless still provided robust protection against B.1.351 challenge, as measured by weight loss and pathology scoring in the lungs. Together, these data support hamsters as a preclinical model to study protection against emerging variants of SARS-CoV-2 conferred by prior infection or vaccination.
Project description:BackgroundThe continuous emergence of SARS-CoV-2 variants of concern (VOC) with immune escape properties, such as Delta (B.1.617.2) and Omicron (B.1.1.529), questions the extent of the antibody-mediated protection against the virus. Here we investigated the long-term antibody persistence in previously infected subjects and the extent of the antibody-mediated protection against B.1, B.1.617.2 and BA.1 variants in unvaccinated subjects previously infected, vaccinated naïve and vaccinated previously infected subjects.MethodsBlood samples collected 15 months post-infection from unvaccinated (n=35) and vaccinated (n=41) previously infected subjects (Vo' cohort) were tested for the presence of antibodies against the SARS-CoV-2 spike (S) and nucleocapsid (N) antigens using the Abbott, DiaSorin, and Roche immunoassays. The serum neutralising reactivity was assessed against B.1, B.1.617.2 (Delta), and BA.1 (Omicron) SARS-CoV-2 strains through micro-neutralisation. The antibody titres were compared to those from previous timepoints, performed at 2- and 9-months post-infection on the same individuals. Two groups of naïve subjects were used as controls, one from the same cohort (unvaccinated n=29 and vaccinated n=20) and a group of vaccinated naïve healthcare workers (n=61).ResultsWe report on the results of the third serosurvey run in the Vo' cohort. With respect to the 9-month time point, antibodies against the S antigen significantly decreased (P=0.0063) among unvaccinated subjects and increased (P<0.0001) in vaccinated individuals, whereas those against the N antigen decreased in the whole cohort. When compared with control groups (naïve Vo' inhabitants and naïve healthcare workers), vaccinated subjects that were previously infected had higher antibody levels (P<0.0001) than vaccinated naïve subjects. Two doses of vaccine elicited stronger anti-S antibody response than natural infection (P<0.0001). Finally, the neutralising reactivity of sera against B.1.617.2 and BA.1 was 4-fold and 16-fold lower than the reactivity observed against the original B.1 strain.ConclusionsThese results confirm that vaccination induces strong antibody response in most individuals, and even stronger in previously infected subjects. Neutralising reactivity elicited by natural infection followed by vaccination is increasingly weakened by the recent emergence of VOCs. While immunity is not completely compromised, a change in vaccine development may be required going forward, to generate cross-protective pan-coronavirus immunity in the global population.
Project description:SARS-CoV-2 Delta (B.1.617.2) variant of concern (VOC) and other VOCs are spreading in Europe. Micro-neutralisation assays with sera obtained after Comirnaty (BNT162b2, BioNTech/Pfizer) vaccination in 36 healthcare workers (31 female) demonstrated significant fold change reduction in neutralising titres compared with the original virus: Gamma (P.1) 2.3, Beta (B.1.351) 10.4, Delta 2.1 and 2.6. The reduction of the Alpha (B.1.1.7) variant was not significant. Despite being lower, remaining neutralisation capacity conferred by Comirnaty against Delta and other VOCs is probably protective.
Project description:The ongoing coronavirus disease 2019 (COVID-19) pandemic continues to disrupt essential health services in 90 percent of countries today. The spike (S) protein found on the surface of the causative agent, the SARS-CoV-2 virus, has been the prime target for current vaccine research since antibodies directed against the S protein were found to neutralize the virus. However, as new variants emerge, mutations within the spike protein have given rise to potential immune evasion of the response generated by the current generation of SARS-CoV-2 vaccines. In this study, a modified, HexaPro S protein subunit vaccine, delivered using a needle-free high-density microarray patch (HD-MAP), was investigated for its immunogenicity and virus-neutralizing abilities. Mice given two doses of the vaccine candidate generated potent antibody responses capable of neutralizing the parental SARS-CoV-2 virus as well as the variants of concern, Alpha and Delta. These results demonstrate that this alternative vaccination strategy has the potential to mitigate the effect of emerging viral variants.
Project description:The outbreak of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) has substantially affected human health globally. Spike-specific antibody response plays a major role in protection against SARS-CoV-2 infection. Here, we examined serological anti-spike antibody and memory B cell responses in adults with acute SARS-CoV-2 infection. Twenty-five adult patients were enrolled between January and September 2020, and 21 (84%) had a detectable spike-binding antibody response in serum on day 21 ± 8 (6 to 33) after the onset of illness. Among those with positive spike-binding antibody response, 19 (90%) had a positive hemagglutination titer and 15 (71%) had angiotensin-converting enzyme 2 (ACE2)-blocking serological activities. Follow-up serum samples collected 11 ± 1 (7 to 15) months after infection exhibited an average of 2.6 ± 1.0 (1.0 to 3.5)-fold reduction in the spike-binding antibody response. Moreover, convalescent and follow-up serum samples showed 83 ± 82 (15 to 306)- and 165 ± 167 (12 to 456)-fold reductions in the neutralization activity against the Omicron variant, respectively. Upon acute infection, spike-specific memory B cell responses were elicited, with an average frequency of 1.3% ± 1.2% of peripheral B cells on day 19 ± 7 (6 to 33) after the onset of illness. IgM memory B cells were predominantly induced. Patients with fever and pneumonia showed significantly stronger spike-binding, ACE2-blocking antibody, and memory B cell responses. In conclusion, spike-specific antibody response elicited upon acute SARS-CoV-2 infection may wane over time and be compromised by the emergence of viral variants. IMPORTANCE As spike protein-specific antibody responses play a major role in protection against SARS-CoV-2, we examined spike-binding and ACE2-blocking antibody responses in SARS-CoV-2 infection at different time points. We found robust responses following acute infection, which waned approximately 11 months after infection. Patients with fever and pneumonia showed significantly stronger spike-binding, ACE2-blocking antibody, and memory B cell responses. In particular, spike-specific antibody response in the convalescent and follow-up serum samples was substantially affected by emerging variants, especially Beta and Omicron variants. These results warrant continued surveillance of spike-specific antibody responses to natural infections and highlight the importance of maintaining functional anti-spike antibodies through immunization.
Project description:BackgroundInactivated vaccine (CoronaVac) and chimpanzee adenovirus-vector vaccine (ChAdOx1) have been widely used in resource-limited settings. However, the information on the reactogenicity and immunogenicity of these two vaccines in the same setting are limited.MethodsHealthy health care workers (HCWs) aged 18 years or older were randomly assigned to receive either two doses of CoronaVac at 4 weeks interval or two doses of ChAdOx1 at 10 weeks interval. Self-reported adverse events (AEs) were collected for 7 days following each vaccination. Immunogenicity was determined by IgG antibodies levels against receptor binding domain (RBD) of the SARS-CoV-2 spike protein (S1 subunit) and the 50% plaque reduction neutralization titers against various strains.ResultsOf the 360 HCWs, 180 in each vaccine group, the median (interquartile range: IQR) age was 35 (29-44) years old and 84.2% were female. Participants who received ChAdOx1 reported higher frequency of AEs than those received CoronaVac after both the first dose (84.4% vs. 66.1%, P < 0.001) and second dose (75.6% vs. 60.6%, P = 0.002), with more AEs in those younger than 30 years of age for both vaccines. The seroconversion rates were 75.6% and 100% following the first dose of CoronaVac and ChAdOx1, respectively. All participants were seropositive at 2 weeks after the second dose. The anti-SARS-CoV-2 RBD IgG levels induced by CoronaVac was lower than ChAdOX1 with geometric means of 164.4 and 278.5 BAU/mL, respectively (P = 0.0066). Both vaccines induced similar levels of neutralizing antibodies against the Wuhan strain, with the titers of 337.4 and 331.2; however, CoronaVac induced significantly lower GMT against Alpha (23.1 vs. 92.5), Delta (21.2 vs. 69.7), and Beta (10.2 vs. 43.6) variants, respectively.ConclusionCoronaVac induces lower measurable antibodies against circulating variants but with lower frequency of AEs than ChAdOx1. An earlier boosting to prevent breakthrough infections may be needed.
Project description:Safe and effective vaccines against severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) and its variants are the best approach to successfully combat the COVID-19 pandemic. The receptor-binding domain (RBD) of the viral spike protein is a major target to develop candidate vaccines. α-Galactosylceramide (αGalCer), a potent invariant natural killer T cell (iNKT) agonist, was site-specifically conjugated to the N-terminus of the RBD to form an adjuvant-protein conjugate, which was anchored on the liposome surface. This is the first time that an iNKT cell agonist was conjugated to the protein antigen. Compared to the unconjugated RBD/αGalCer mixture, the αGalCer-RBD conjugate induced significantly stronger humoral and cellular responses. The conjugate vaccine also showed effective cross-neutralization to all variants of concern (B.1.1.7/alpha, B.1.351/beta, P.1/gamma, B.1.617.2/delta, and B.1.1.529/omicron). These results suggest that the self-adjuvanting αGalCer-RBD has great potential to be an effective COVID-19 vaccine candidate, and this strategy might be useful for designing various subunit vaccines.