Engineering and functional characterization of a proton-driven β-lactam antibiotic translocation module for bionanotechnological applications.
Ontology highlight
ABSTRACT: Novel approaches in synthetic biology focus on the bottom-up modular assembly of natural, modified natural or artificial components into molecular systems with functionalities not found in nature. A possible application for such techniques is the bioremediation of natural water sources contaminated with small organic molecules (e.g., drugs and pesticides). A simple molecular system to actively accumulate and degrade pollutants could be a bionanoreactor composed of a liposome or polymersome scaffold combined with energizing- (e.g., light-driven proton pump), transporting- (e.g., proton-driven transporter) and degrading modules (e.g., enzyme). This work focuses on the engineering of a transport module specific for β-lactam antibiotics. We previously solved the crystal structure of a bacterial peptide transporter, which allowed us to improve the affinity for certain β-lactam antibiotics using structure-based mutagenesis combined with a bacterial uptake assay. We were able to identify specific mutations, which enhanced the affinity of the transporter for antibiotics containing certain structural features. Screening of potential compounds allowed for the identification of a β-lactam antibiotic ligand with relatively high affinity. Transport of antibiotics was evaluated using a solid-supported membrane electrophysiology assay. In summary, we have engineered a proton-driven β-lactam antibiotic translocation module, contributing to the growing toolset for bionanotechnological applications.
SUBMITTER: Stauffer M
PROVIDER: S-EPMC8390754 | biostudies-literature |
REPOSITORIES: biostudies-literature
ACCESS DATA