MA Cation-Induced Diffusional Growth of Low-Bandgap FA-Cs Perovskites Driven by Natural Gradient Annealing
Ontology highlight
ABSTRACT: Low-bandgap formamidinium-cesium (FA-Cs) perovskites of FA1-xCsxPbI3 (x < 0.1) are promising candidates for efficient and robust perovskite solar cells, but their black-phase crystallization is very sensitive to annealing temperature. Unfortunately, the low heat conductivity of the glass substrate builds up a temperature gradient within from bottom to top and makes the initial annealing temperature of the perovskite film lower than the black-phase crystallization point (~150°C). Herein, we take advantage of such temperature gradient for the diffusional growth of high-quality FA-Cs perovskites by introducing a thermally unstable MA+ cation, which would firstly form α-phase FA-MA-Cs mixed perovskites with low formation energy at the hot bottom of the perovskite films in the early annealing stage. The natural gradient annealing temperature and the thermally unstable MA+ cation then lead to the bottom-to-top diffusional growth of highly orientated α-phase FA-Cs perovskite, which exhibits 10-fold of enhanced crystallinity and reduced trap density (~3.85 × 1015 cm−3). Eventually, such FA-Cs perovskite films were fabricated into stable solar cell devices with champion efficiency up to 23.11%, among the highest efficiency of MA-free perovskite solar cells.
SUBMITTER: Zhang T
PROVIDER: S-EPMC8391048 | biostudies-literature |
REPOSITORIES: biostudies-literature
ACCESS DATA