Project description:Graphical abstract Unlabelled Image Highlights • Venous thromboembolism (VTE) is a frequent complication in COVID-19 patients.• Single-center study of COVID-19 patients admitted to general ward.• 17.0% of patients with VTE• Lack of thromboprophylaxis and leukocytosis were independent risk factors of VTE.• VTE is independently associated with worse in-hospital outcomes.
Project description:BackgroundVenous thromboembolism (VTE) is a frequent complication in critically ill patients with coronavirus disease 2019 (COVID-19) and is associated with mortality. Early diagnosis and treatment of VTE is warranted.ObjectiveTo develop a prediction model for VTE in critically ill COVID-19 patients.Patients and methodsIn this retrospective cohort study, 127 adult patients with confirmed COVID-19 infection admitted to the intensive care unit of two teaching hospitals were included. VTE was diagnosed with either ultrasound or computed tomography scan. Univariate receiver operating characteristic (ROC) curves were constructed for Positive End Expiratory Pressure, PaO2/FiO2 ratio, platelet count, international normalized ratio, activated partial thromboplastin time as well as levels of fibrinogen, antithrombin, D-dimer and C-reactive protein (CRP). Multivariate analysis was done using binary linear regression.ResultsVariables associated with VTE in both univariate and multivariate analysis were D-dimer and CRP with an area under the curve (AUC) of 0.64, P = 0.023 and 0.75, P = 0.045, respectively. Variables indicating hypoxemia were not predictive. The ROC curve of D-dimer and CRP combined had an AUC of 0.83, P < 0.05. Categorized values of D-dimer and CRP were used to compute a mean absolute risk for the combination of these variables with a high positive predictive value. The predicted probability of VTE with a D-dimer > 15 in combination with a CRP > 280 was 98%. The negative predictive value of D-dimer was low.ConclusionElevated CRP and D-dimer have a high positive predictive value for VTE in critically ill COVID-19 patients. We developed a prediction table with these biomarkers that can aid clinicians in the timing of imaging in patients with suspected VTE.
Project description:Background: Recent studies revealed a high prevalence of venous thromboembolism (VTE) events in coronavirus disease 2019 (COVID-19) patients, especially in those who are critically ill. Available studies report varying prevalence rates. Hence, the exact prevalence remains uncertain. Moreover, there is an ongoing debate regarding the appropriate dosage of thromboprophylaxis. Methods: We performed a systematic review and proportion meta-analysis following the Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA) guidelines. We searched PubMed and EMBASE for studies exploring the prevalence of VTE in critically ill COVID-19 patients till 25/07/2020. We pooled the proportion of VTE. Additionally, in a subgroup analysis, we pooled VTE events detected by systematic screening. Finally, in an exploratory analysis, we compared the odds of VTE in patients on prophylactic compared with therapeutic anticoagulation. Results: The review comprised 24 studies and over 2,500 patients. The pooled proportion of VTE prevalence was 0.31 [95% confidence interval (CI) 0.24, 0.39; I 2 94%], of VTE utilizing systematic screening was 0.48 (95% CI 0.33, 0.63; I 2 91%), of deep venous thrombosis was 0.23 (95% CI 0.14, 0.32; I 2 96%), and of pulmonary embolism was 0.14 (95% CI 0.09, 0.20; I 2 90%). Exploratory analysis of few studies, utilizing systematic screening, VTE risk increased significantly with prophylactic, compared with therapeutic anticoagulation [odds ratio (OR) 5.45; 95% CI 1.90, 15.57; I 2 0%]. Discussion: Our review revealed a high prevalence of VTE in critically ill COVID-19 patients. Almost 50% of patients had VTE detected by systematic screening. Higher thromboprophylaxis dosages may reduce VTE burden in this patient's cohort compared with standard prophylactic anticoagulation; however, this is to be ascertained by ongoing randomized controlled trials.
Project description:To test the hypothesis that relatively lower clot strength on thromboelastography maximum amplitude (MA) is associated with development of venous thromboembolism (VTE) in critically ill patients with COVID-19.DesignProspective, observational cohort study.SettingTertiary care, academic medical center in Nashville, TN.PatientsPatients with acute respiratory failure from COVID-19 pneumonia admitted to the adult medical ICU without known VTE at enrollment.InterventionsNone.Measurements and main resultsNinety-eight consecutive critically ill adults with laboratory-confirmed COVID-19 were enrolled. Thromboelastography parameters and conventional coagulation parameters were measured on days 0 (within 48 hr of ICU admission), 3, 5, and 7 after enrollment. The primary outcome was diagnosis of VTE with confirmed deep venous thrombosis and/or pulmonary embolism by clinical imaging or autopsy. Twenty-six patients developed a VTE. Multivariable regression controlling for antiplatelet exposure and anticoagulation dose with death as a competing risk found that lower MA was associated with increased risk of VTE. Each 1 mm increase in enrollment and peak MA was associated with an 8% and 14% decrease in the risk of VTE, respectively (enrollment MA: subdistribution hazard ratio [SHR], 0.92; 95% CI, 0.87-0.97; p = 0.003 and peak MA: SHR, 0.86; 95% CI, 0.81-0.91; p < 0.001). Lower enrollment platelet counts and fibrinogen levels were also associated with increased risk of VTE (p = 0.002 and p = 0.01, respectively). Platelet count and fibrinogen level were positively associated with MA (multivariable model: adjusted R 2 = 0.51; p < 0.001).ConclusionsWhen controlling for the competing risk of death, lower enrollment and peak MA were associated with increased risk of VTE. Lower platelet counts and fibrinogen levels at enrollment were associated with increased risk of VTE. The association of diminished MA, platelet counts, and fibrinogen with VTE may suggest a relative consumptive coagulopathy in critically ill patients with COVID-19.
Project description:BackgroundThe rapid spread of the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), and coronavirus disease 2019 (COVID-19), has caused more than 3.9 million cases worldwide. Currently, there is great interest to assess venous thrombosis prevalence, diagnosis, prevention, and management in patients with COVID-19.ObjectivesTo determine the prevalence of venous thromboembolism (VTE) in critically ill patients with COVID-19, using lower limbs venous ultrasonography screening.MethodsBeginning March 8, we enrolled 25 patients who were admitted to the intensive care unit (ICU) with confirmed SARS-CoV-2 infections. The presence of lower extremity deep vein thrombosis (DVT) was systematically assessed by ultrasonography between day 5 and 10 after admission. The data reported here are those available up to May 9, 2020.ResultsThe mean (± standard deviation) age of the patients was 68 ± 11 years, and 64% were men. No patients had a history of VTE. During the ICU stay, 8 patients (32%) had a VTE; 6 (24%) a proximal DVT, and 5 (20%) a pulmonary embolism. The rate of symptomatic VTE was 24%, while 8% of patients had screen-detected DVT. Only those patients with a documented VTE received a therapeutic anticoagulant regimen. As of May 9, 2020, 5 patients had died (20%), 2 remained in the ICU (8%), and 18 were discharged (72%).ConclusionsIn critically ill patients with SARS-CoV-2 infections, DVT screening at days 5-10 of admission yielded a 32% prevalence of VTE. Seventy-five percent of events occurred before screening. Earlier screening might be effective in optimizing care in ICU patients with COVID-19.
Project description:Infections caused by SARS-CoV-2 may cause a severe disease, termed COVID-19, with significant mortality. Host responses to this infection, mainly in terms of systemic inflammation, have emerged as key pathogenetic mechanisms, and their modulation is the only therapeutic strategy that has shown a mortality benefit. Herein, we used peripheral blood transcriptomes of critically-ill COVID-19 patients obtained at admission in an Intensive Care Unit, to identify two clusters that, in spite of no major clinical differences, have different gene expression profiles that reveal different underlying pathogenetic mechanisms and ultimately have different ICU outcome. A transcriptomic signature was used to identify these clusters in an external validation cohort, yielding a similar result. These results illustrate the potential of transcriptomic profiles to identify patient endotypes and point to relevant pathogenetic mechanisms in COVID-19.
Project description:Many aspects of care such as management of hypercoagulable state in COVID-19 patients, especially those admitted to intensive care units is challenging in the rapidly evolving pandemic of novel coronavirus disease 2019 (COVID-19). We seek to systematically review the available evidence regarding the anticoagulation approach to prevent venous thromboembolism (VTE) among COVID-19 patients admitted to intensive care units. Electronic databases were searched for studies reporting venous thromboembolic events in patients admitted to the intensive care unit receiving any type of anticoagulation (prophylactic or therapeutic). The pooled prevalence (and 95% confidence interval [CI]) of VTE among patients receiving anticoagulant were calculated using the random-effects model. Subgroup pooled analyses were performed with studies reported prophylactic anticoagulation alone and with studies reported mixed prophylactic and therapeutic anticoagulation. We included twelve studies (8 Europe; 2 UK; 1 each from the US and China) in our systematic review and meta-analysis. All studies utilized LMWH or unfractionated heparin as their pharmacologic thromboprophylaxis, either prophylactic doses or therapeutic doses. Seven studies reported on the proportion of patients with the previous history of VTE (range 0-10%). The pooled prevalence of VTE among ICU patients receiving prophylactic or therapeutic anticoagulation across all studies was 31% (95% CI 20-43%). Subgroup pooled analysis limited to studies reported prophylactic anticoagulation alone and mixed (therapeutic and prophylactic anticoagulation) reported pooled prevalences of VTE of 38% (95% CI 10-70%) and 27% (95% CI 17-40%) respectively. With a high prevalence of thromboprophylaxis failure among COVID-19 patients admitted to intensive care units, individualised rather than protocolised VTE thromboprophylaxis would appear prudent at interim.
Project description:In this study, we aim to evaluate the relation between COVID-19 and bacterial secondary superinfections. We assessed the functional responses of neutrophils and monocytes isolated from acute and recovery COVID-19 patients upon bacterial infection using Flow-cytometry and proteomics based assays. Both neutrophils and monocytes showed impared intracellular microbicidal capacity along with a decreased functional response. Determination of plasma cytokines levels showed a significant association of certain cytokines towards secondary bacterial infection.
Project description:Total plasma IgA glycosylation was compared between healthy volunteers and volunteers suffering fromo infections with either the influenza A virus or the severe acute respiratory syndrome corona virus 2. Data from functional assays of the same plasma samples, such as neutrophil extracellular trap formation is also available.