ABSTRACT: The objective of the current study was to perform a screening of the drug-induced effects of the prostaglandin F2α (PGF2α) and EP2 agonist, omidenepag (OMD), using two- and three-dimensional (2D and 3D) cultures of dexamethasone (DEX)-treated human trabecular meshwork (HTM) cells. The drug-induced effects on 2D monolayers were characterized by measuring the transendothelial electrical resistance (TEER) and fluorescein isothiocyanate (FITC)-dextran permeability, the physical properties of 3D spheroids, and the gene expression of extracellular matrix (ECM) molecules, including collagen (COL) 1, 4 and 6, and fibronectin (FN), α smooth muscle actin (αSMA), a tissue inhibitor of metalloproteinase (TIMP) 1-4, matrix metalloproteinase (MMP) 2, 9 and 14 and endoplasmic reticulum (ER) stress-related factors. DEX induced a significant increase in TEER values and a decrease in FITC-dextran permeability, respectively, in the 2D HTM monolayers, and these effects were substantially inhibited by PGF2α and OMD. Similarly, DEX also caused decreased sizes and an increased stiffness in the 3D HTM spheroids, but PGF2α or OMD had no effects on the stiffness of the spheroids. Upon exposure to DEX, the following changes were observed: the upregulation of COL4 (2D), αSMA (2D), and TIMP4 (2D and 3D) and the downregulation of TIMP1 and 2 (3D), MMP2 and 14 (3D), inositol-requiring enzyme 1 (IRE1), activating transcription factor 6 (ATF6) (2D), and glucose regulator protein (GRP)78 (3D). In the presence of PGF2α or OMD, the downregulation of COL4 (2D), FN (3D), αSMA (2D), TIMP3 (3D), MMP9 (3D) and the CCAAT/enhancer-binding protein homologous protein (CHOP) (2D), and the upregulation of TIMP4 (2D and 3D), MMP2, 9 and 14 (2D), respectively, were observed. The findings presented herein suggest that 2D and 3D cell cultures can be useful in screening for the drug-induced effects of PGF2α and OMD toward DEX-treated HTM cells.