Unknown

Dataset Information

0

Engineering a Cytochrome P450 for Demethylation of Lignin-Derived Aromatic Aldehydes.


ABSTRACT: Biological funneling of lignin-derived aromatic compounds is a promising approach for valorizing its catalytic depolymerization products. Industrial processes for aromatic bioconversion will require efficient enzymes for key reactions, including demethylation of O-methoxy-aryl groups, an essential and often rate-limiting step. The recently characterized GcoAB cytochrome P450 system comprises a coupled monoxygenase (GcoA) and reductase (GcoB) that catalyzes oxidative demethylation of the O-methoxy-aryl group in guaiacol. Here, we evaluate a series of engineered GcoA variants for their ability to demethylate o-and p-vanillin, which are abundant lignin depolymerization products. Two rationally designed, single amino acid substitutions, F169S and T296S, are required to convert GcoA into an efficient catalyst toward the o- and p-isomers of vanillin, respectively. Gain-of-function in each case is explained in light of an extensive series of enzyme-ligand structures, kinetic data, and molecular dynamics simulations. Using strains of Pseudomonas putida KT2440 already optimized for p-vanillin production from ferulate, we demonstrate demethylation by the T296S variant in vivo. This work expands the known aromatic O-demethylation capacity of cytochrome P450 enzymes toward important lignin-derived aromatic monomers.

SUBMITTER: Ellis ES 

PROVIDER: S-EPMC8395679 | biostudies-literature |

REPOSITORIES: biostudies-literature

Similar Datasets

| S-EPMC6021390 | biostudies-literature
| S-EPMC10092897 | biostudies-literature
| S-EPMC9202032 | biostudies-literature
| PRJEB38781 | ENA
| S-EPMC8367835 | biostudies-literature
| S-EPMC6292453 | biostudies-literature
| S-EPMC8753607 | biostudies-literature
| S-EPMC3707514 | biostudies-literature
| S-EPMC8162728 | biostudies-literature
| S-EPMC6999465 | biostudies-literature