Unknown

Dataset Information

0

Engineering of Yeast Old Yellow Enzyme OYE3 Enables Its Capability Discriminating of (E)-Citral and (Z)-Citral.


ABSTRACT: The importance of yeast old yellow enzymes is increasingly recognized for direct asymmetric reduction of (E/Z)-citral to (R)-citronellal. As one of the most performing old yellow enzymes, the enzyme OYE3 from Saccharomyces cerevisiae S288C exhibited complementary enantioselectivity for the reduction of (E)-citral and (Z)-citral, resulting in lower e.e. value of (R)-citronellal in the reduction of (E/Z)-citral. To develop a novel approach for the direct synthesis of enantio-pure (R)-citronellal from the reduction of (E/Z)-citral, the enzyme OYE3 was firstly modified by semi-rational design to improve its (R)-enantioselectivity. The OYE3 variants W116A and S296F showed strict (R)-enantioselectivity in the reduction of (E)-citral, and significantly reversed the (S)-enantioselectivity in the reduction of (Z)-citral. Next, the double substitution of OYE3 led to the unique variant S296F/W116G, which exhibited strict (R)-enantioselectivity in the reduction of (E)-citral and (E/Z)-citral, but was not active on (Z)-citral. Relying on its capability discriminating (E)-citral and (Z)-citral, a new cascade reaction catalyzed by the OYE3 variant S296F/W116G and glucose dehydrogenase was developed, providing the enantio-pure (R)-citronellal and the retained (Z)-citral after complete reduction of (E)-citral.

SUBMITTER: Wang T 

PROVIDER: S-EPMC8399149 | biostudies-literature |

REPOSITORIES: biostudies-literature

Similar Datasets

| S-EPMC6470962 | biostudies-literature
| S-EPMC6767020 | biostudies-literature
| S-EPMC1136166 | biostudies-other
| S-EPMC5608841 | biostudies-literature
| S-EPMC427764 | biostudies-literature
| S-EPMC3394746 | biostudies-literature
| S-EPMC3004258 | biostudies-literature
| S-EPMC37475 | biostudies-literature
| S-EPMC9840898 | biostudies-literature
| S-EPMC6194350 | biostudies-literature