Ontology highlight
ABSTRACT: Background
Autophagy is believed to participate in embryonic development, but whether the expression of autophagy-associated genes undergoes changes during the development of human embryonic kidneys remains unknown.Methods
In this work, we identified 36,151 human renal cells from embryonic kidneys of 9-18 gestational weeks in 16 major clusters by single-cell RNA sequencing (scRNA-seq), and detected 1350 autophagy-related genes in all fetal renal cells. The abundance of each cell cluster in Wilms tumor samples from scRNA-seq and GDC TARGET WT datasets was detected by CIBERSORTx. R package Monocle 3 was used to determine differentiation trajectories. Cyclone tool of R package scran was applied to calculate the cell cycle scores. R package SCENIC was used to investigate the transcriptional regulons. The FindMarkers tool from Seurat was used to calculate DEGs. GSVA was used to perform gene set enrichment analyses. CellphoneDB was utilized to analyze intercellular communication.Results
It was found that cells in the 13th gestational week showed the lowest transcriptional level in each cluster in all stages. Nephron progenitors could be divided into four subgroups with diverse levels of autophagy corresponding to different SIX2 expressions. SSBpod (podocyte precursors) could differentiate into four types of podocytes (Pod), and autophagy-related regulation was involved in this process. Pseudotime analysis showed that interstitial progenitor cells (IPCs) potentially possessed two primitive directions of differentiation to interstitial cells with different expressions of autophagy. It was found that NPCs, pretubular aggregates and interstitial cell clusters had high abundance in Wilms tumor as compared with para-tumor samples with active intercellular communication.Conclusions
All these findings suggest that autophagy may be involved in the development and cellular heterogeneity of early human fetal kidneys. In addition, part of Wilms tumor cancer cells possess the characteristics of some fetal renal cell clusters.
SUBMITTER: Wen-Jin C
PROVIDER: S-EPMC8404318 | biostudies-literature |
REPOSITORIES: biostudies-literature