Project description:Cardiac arrhythmias associated with intracellular calcium inhomeostasis are refractory to antiarrhythmic therapy. We hypothesized that late sodium current (I Na) contributed to the calcium-related arrhythmias. Monophasic action potential duration at 90% completion of repolarization (MAPD90) was significantly increased and ventricular arrhythmias were observed in hearts with increased intracellular calcium concentration ([Ca2+]i) by using Bay K 8644, and the increase became greater in hearts treated with a combination of ATX-II and Bay K 8644 compared to Bay K 8644 alone. The prolongations caused by Bay K 8644 and frequent episodes of ventricular tachycardias, both in absence and presence of ATX-II, were significantly attenuated or abolished by late I Na inhibitors TTX and eleclazine. In rabbit ventricular myocytes, Bay K 8644 increased I CaL density, calcium transient and myocyte contraction. TTX and eleclazine decreased the amplitude of late I Na, the reverse use dependence of MAPD90 at slower heart rate, and attenuated the increase of intracellular calcium transient and myocyte contraction. TTX diminished the phosphorylation of CaMKII-δ and Nav 1.5 in hearts treated with Bay K 8644 and ATX-II. In conclusion, late I Na contributes to ventricular arrhythmias and its inhibition is plausible to treat arrhythmias in hearts with increased [Ca2+]i.
Project description:Pseudo-ginsengenin DQ (PDQ) is the product of the oxidative cyclization of protopanaxadiol. PDQ exhibits various bioactivities, including reversal of multidrug resistance in cancer, renal protective effects against acute nephrotoxicity and attenuating myocardial ischemia injury induced by isoproterenol or ligation of coronary arterials, but its effect on arrhythmias has not been clear until now. Because of the complicated effects of ginseng on the cardiovascular system, it is necessary to investigate whether PDQ affects arrhythmias, which are always concomitant with other cardiac diseases. Aconitine was used to induce arrhythmia in vivo. To understand its electrophysiological fundamental, whole-cell patch-clamp was used to record the L-type calcium current (I Ca,L) and potassium currents (I K and I K1) in the ventricular myocytes in rats. Oral administration of PDQ exerted obvious antiarrhythmic effects, as indicated by the decreased incidence rate, lower number of occurrences, and shorter duration time of ventricular tachycardia and ventricular tachycardia, decreased mortality rate and increased survival time. I Ca,L and I K were inhibited by PDQ treatment while I K1 was not affected. To conclude, PDQ may have an anti-arrhythmia effect through inhibiting I Ca,L and I K.
Project description:Functional impact of cardiac ryanodine receptor (type 2 RyR or RyR2) phosphorylation by protein kinase A (PKA) remains highly controversial. In this study, we characterized a functional link between PKA-mediated RyR2 phosphorylation level and sarcoplasmic reticulum (SR) Ca2+ release and leak in permeabilized rabbit ventricular myocytes. Changes in cytosolic [Ca2+] and intra-SR [Ca2+]SR were measured with Fluo-4 and Fluo-5N, respectively. Changes in RyR2 phosphorylation at two PKA sites, serine-2031 and -2809, were measured with phospho-specific antibodies. cAMP (10μM) increased Ca2+ spark frequency approximately two-fold. This effect was associated with an increase in SR Ca2+ load from 0.84 to 1.24mM. PKA inhibitory peptide (PKI; 10μM) abolished the cAMP-dependent increase of SR Ca2+ load and spark frequency. When SERCA was completely blocked by thapsigargin, cAMP did not affect RyR2-mediated Ca2+ leak. The lack of a cAMP effect on RyR2 function can be explained by almost maximal phosphorylation of RyR2 at serine-2809 after sarcolemma permeabilization. This high RyR2 phosphorylation level is likely the consequence of a balance shift between protein kinase and phosphatase activity after permeabilization. When RyR2 phosphorylation at serine-2809 was reduced to its "basal" level (i.e. RyR2 phosphorylation level in intact myocytes) using kinase inhibitor staurosporine, SR Ca2+ leak was significantly reduced. Surprisingly, further dephosphorylation of RyR2 with protein phosphatase 1 (PP1) markedly increased SR Ca2+ leak. At the same time, phosphorylation of RyR2 at serine 2031 did not significantly change under identical experimental conditions. These results suggest that RyR2 phosphorylation by PKA has a complex effect on SR Ca2+ leak in ventricular myocytes. At an intermediate level of RyR2 phosphorylation SR Ca2+ leak is minimal. However, complete dephosphorylation and maximal phosphorylation of RyR2 increases SR Ca2+ leak.
Project description:Augmented Na(+) /Ca(2+) exchanger (NCX) activity may play a crucial role in cardiac arrhythmogenesis; however, data regarding the anti-arrhythmic efficacy of NCX inhibition are debatable. Feasible explanations could be the unsatisfactory selectivity of NCX inhibitors and/or the dependence of the experimental model on the degree of Ca(2+) i overload. Hence, we used NCX inhibitors SEA0400 and the more selective ORM10103 to evaluate the efficacy of NCX inhibition against arrhythmogenic Ca(2+) i rise in conditions when [Ca(2+) ]i was augmented via activation of the late sodium current (INaL ) or inhibition of the Na(+) /K(+) pump.Action potentials (APs) were recorded from canine papillary muscles and Purkinje fibres by microelectrodes. NCX current (INCX ) was determined in ventricular cardiomyocytes utilizing the whole-cell patch clamp technique. Ca(2+) i transients (CaTs) were monitored with a Ca(2+) -sensitive fluorescent dye, Fluo-4.Enhanced INaL increased the Ca(2+) load and AP duration (APD). SEA0400 and ORM10103 suppressed INCX and prevented/reversed the anemone toxin II (ATX-II)-induced [Ca(2+) ]i rise without influencing APD, CaT or cell shortening, or affecting the ATX-II-induced increased APD. ORM10103 significantly decreased the number of strophanthidin-induced spontaneous diastolic Ca(2+) release events; however, SEA0400 failed to restrict the veratridine-induced augmentation in Purkinje-ventricle APD dispersion.Selective NCX inhibition - presumably by blocking rev INCX (reverse mode NCX current) - is effective against arrhythmogenesis caused by [Na(+) ]i -induced [Ca(2+) ]i elevation, without influencing the AP waveform. Therefore, selective INCX inhibition, by significantly reducing the arrhythmogenic trigger activity caused by the perturbed Ca(2+) i handling, should be considered as a promising anti-arrhythmic therapeutic strategy.
Project description:Of the many ongoing controversies regarding the workings of the sarcoplasmic reticulum (SR) in cardiac myocytes, two unresolved and interconnected topics are 1), mechanisms of calcium (Ca(2+)) wave propagation, and 2), speed of Ca(2+) diffusion within the SR. Ca(2+) waves are initiated when a spontaneous local SR Ca(2+) release event triggers additional release from neighboring clusters of SR release channels (ryanodine receptors (RyRs)). A lack of consensus regarding the effective Ca(2+) diffusion constant in the SR (D(Ca,SR)) severely complicates our understanding of whether dynamic local changes in SR [Ca(2+)] can influence wave propagation. To address this problem, we have implemented a computational model of cytosolic and SR [Ca(2+)] during Ca(2+) waves. Simulations have investigated how dynamic local changes in SR [Ca(2+)] are influenced by 1), D(Ca,SR); 2), the distance between RyR clusters; 3), partial inhibition or stimulation of SR Ca(2+) pumps; 4), SR Ca(2+) pump dependence on cytosolic [Ca(2+)]; and 5), the rate of transfer between network and junctional SR. Of these factors, D(Ca,SR) is the primary determinant of how release from one RyR cluster alters SR [Ca(2+)] in nearby regions. Specifically, our results show that local increases in SR [Ca(2+)] ahead of the wave can potentially facilitate Ca(2+) wave propagation, but only if SR diffusion is relatively slow. These simulations help to delineate what changes in [Ca(2+)] are possible during SR Ca(2+)release, and they broaden our understanding of the regulatory role played by dynamic changes in [Ca(2+)](SR).
Project description:In ventricular myocytes, the physiological function of stromal interaction molecule 1 (STIM1), an endo/sarcoplasmic reticulum (ER/SR) Ca(2+) sensor, is unclear with respect to its cellular localization, its Ca(2+)-dependent mobilization, and its action on Ca(2+) signaling. Confocal microscopy was used to measure Ca(2+) signaling and to track the cellular movement of STIM1 with mCherry and immunofluorescence in freshly isolated adult rat ventricular myocytes and those in short-term primary culture. We found that endogenous STIM1 was expressed at low but measureable levels along the Z-disk, in a pattern of puncta and linear segments consistent with the STIM1 localizing to the junctional SR (jSR). Depleting SR Ca(2+) using thapsigargin (2-10 µM) changed neither the STIM1 distribution pattern nor its mobilization rate, evaluated by diffusion coefficient measurements using fluorescence recovery after photobleaching. Two-dimensional blue native polyacrylamide gel electrophoresis and coimmunoprecipitation showed that STIM1 in the heart exists mainly as a large protein complex, possibly a multimer, which is not altered by SR Ca(2+) depletion. Additionally, we found no store-operated Ca(2+) entry in control or STIM1 overexpressing ventricular myocytes. Nevertheless, STIM1 overexpressing cells show increased SR Ca(2+) content and increased SR Ca(2+) leak. These changes in Ca(2+) signaling in the SR appear to be due to STIM1 binding to phospholamban and thereby indirectly activating SERCA2a (Sarco/endoplasmic reticulum Ca(2+) ATPase). We conclude that STIM1 binding to phospholamban contributes to the regulation of SERCA2a activity in the steady state and rate of SR Ca(2+) leak and that these actions are independent of store-operated Ca(2+) entry, a process that is absent in normal heart cells.
Project description:Titanium implants are often combined with microporous titania coatings simultaneously doped with various elements to enhance their antibacterial, angiogenic and osteogenic activities. To evaluate how Sr doping levels affect properties of titania coatings simultaneously doped with Ca, P, Co and F (TiCPCF coatings), we prepared coatings with Sr contents equal to 6, 11 and 18 wt% (TiCPCF-S6, TiCPCF-S11 and TiCPCF-S18, respectively) using micro-arc oxidation of titanium. Sr presence in TiCPCF coatings did not affect their phase compositions, microstructure, surface wettability, roughness, and adhesion to titanium. Antibacterial, angio- and osteo-genic activities of all the coatings were evaluated. Sr incorporation improved mesenchymal stem cell proliferation, osteogenic differentiation and implant osseointegration. TiCPCF-S11 showed the most optimum Sr content judging by its enhanced osteogenic activity. While Sr incorporation did not weaken angiogenic and antibacterial abilities of TiCPCF. Thus TiCPCF-S11 coating is a very strong candidate to be used as a next-generation bone implant material.
Project description:The extracellular calcium-sensing receptor (CaSR) controls vital bone cell functions such as cell growth, differentiation and apoptosis. The binding of the native agonist (Ca2+) to CaSR activates the receptor, which undergoes structural changes that trigger a cascade of events along the cellular signaling pathways. Strontium (in the form of soluble salts) has been found to also be a CaSR agonist. The activation of the receptor by Sr2+ is considered to be the major mechanism through which strontium exerts its anti-osteoporosis effect, mostly in postmenopausal women. Strontium-activated CaSR initiates a series of signal transduction events resulting in both osteoclast apoptosis and osteoblast differentiation, thus strengthening the bone tissue. The intimate mechanism of Sr2+ activation of CaSR is still enigmatic. Herewith, by employing a combination of density functional theory (DFT) calculations and polarizable continuum model (PCM) computations, we have found that the Ca2+ binding sites 1, 3, and 4 in the activated CaSR, although possessing a different number and type of protein ligands, overall structure and charge state, are all selective for Ca2+ over Sr2+. The three binding sites, regardless of their structural differences, exhibit almost equal metal selectivity if they are flexible and have no geometrical constraints on the incoming Sr2+. In contrast to Ca2+ and Sr2+, Mg2+ constructs, when allowed to fully relax during the optimization process, adopt their stringent six-coordinated octahedral structure at the expense of detaching a one-backbone carbonyl ligand and shifting it to the second coordination layer of the metal. The binding of Mg2+ and Sr2+ to a rigid/inflexible calcium-designed binding pocket requires an additional energy penalty for the binding ion; however, the price for doing so (to be paid by Sr2+) is much less than that of Mg2+. The results obtained delineate the key factors controlling the competition between metal cations for the receptor and shed light on some aspects of strontium's therapeutic effects.
Project description:The intricate regulation of the compartmental Ca2+ concentrations in cardiomyocytes is critical for electrophysiology, excitation-contraction coupling, and other signaling pathways. Research into the complex signaling pathways is motivated by cardiac pathologies including arrhythmia and maladaptive myocyte remodeling, which result from Ca2+ dysregulation. Of interest to this investigation are two types of Ca2+ currents in cardiomyocytes: 1) background Ca2+ entry, i.e., Ca2+ transport across the sarcolemma from the extracellular space into the cytosol, and 2) Ca2+ leak from the sarcoplasmic reticulum (SR) across the SR membrane into the cytosol. Candidates for the ion channels underlying background Ca2+ entry and SR Ca2+ leak channels include members of the mechano-modulated transient receptor potential (TRP) family. We used a mathematical model of a human ventricular myocyte to analyze the individual contributions of background Ca2+ entry and SR Ca2+ leak to the modulation of Ca2+ transients and SR Ca2+ load at rest and during action potentials. Background Ca2+ entry exhibited a positive relationship with both [Ca2+]i and [Ca2+]SR. Modulating SR Ca2+ leak had opposite effects of background Ca2+ entry. Effects of SR Ca2+ leak on Ca2+ were particularly pronounced at lower pacing frequency. In contrast to the pronounced effects of background and leak Ca2+ currents on Ca2+ concentrations, the effects on cellular electrophysiology were marginal. Our studies provide quantitative insights into the differential modulation of compartmental Ca2+ concentrations by the background and leak Ca2+ currents. Furthermore, our studies support the hypothesis that TRP channels play a role in strain-modulation of cardiac contractility. In summary, our investigations shed light on the physiological effects of the background and leak Ca2+ currents and their contribution to the development of disease caused by Ca2+ dysregulation.
Project description:Background and purposeThe Na+ /Ca2+ exchanger (NCX) working in either forward or reverse mode participates in maintaining intracellular Ca2+ ([Ca2+ ]i ) homeostasis, which is essential for determining cell fate. Previously, numerous blockers targeting reverse or forward NCX have been developed and studied in ischaemic tissue injury but barely examined in glioblastoma for the purpose of anti-tumour therapy. We assessed the effect of NCX blockers on glioblastoma growth and whether NCX can become a therapeutic target.Experimental approachPatch-clamp recording, Ca2+ imaging, flow cytometry, and Western blot were used to study the effects of specific and non-specific NCX blockers on cultured glioblastoma cells. In vivo bioluminescent imaging was used to measure effects on grafted glioblastoma.Key resultsSelectively blocking the reverse NCX with SEA0400, SN-6, and YM-244769 did not affect tumour cell viability. Blocking the forward NCX with bepridil, CB-DMB, or KB-R7943 elevated [Ca2+ ]i and killed glioblastoma cells. Bepridil and CB-DMB caused Ca2+ -dependent cell cycle arrest together with apoptosis, which were all attenuated by a Ca2+ chelator BAPTA-AM. Systemic administration of bepridil inhibited growth of brain-grafted glioblastoma. Bepridil did not appear to have a cytotoxic effect on human astrocytes, which have higher functional expression of NCX than glioblastoma cells.Conclusions and implicationsLow expression of the NCX makes glioblastoma cells sensitive to disturbance of [Ca2+ ]i . Interventions designed to block the forward NCX can cause Ca2+ -mediated injury to glioblastoma thus having therapeutic potential. Bepridil could be a lead compound for developing new anti-tumour drugs.