Unknown

Dataset Information

0

A Rapidly Stabilizing Water-Gated Field-Effect Transistor Based on Printed Single-Walled Carbon Nanotubes for Biosensing Applications.


ABSTRACT: Biosensors are expected to revolutionize disease management through provision of low-cost diagnostic platforms for molecular and pathogenic detection with high sensitivity and short response time. In this context, there has been an ever-increasing interest in using electrolyte-gated field-effect transistors (EG-FETs) for biosensing applications owing to their expanding potential of being employed for label-free detection of a broad range of biomarkers with high selectivity and sensitivity while operating at sub-volt working potentials. Although organic semiconductors have been widely utilized as the channel in EG-FETs, primarily due to their compatibility with cost-effective low-temperature solution-processing fabrication techniques, alternative carbon-based platforms have the potential to provide similar advantages with improved electronic performances. Here, we propose the use of inkjet-printed polymer-wrapped monochiral single-walled carbon nanotubes (s-SWCNTs) for the channel of EG-FETs in an aqueous environment. In particular, we show that our EG-CNTFETs require only an hour of stabilization before producing a highly stable response suitable for biosensing, with a drastic time reduction with respect to the most exploited organic semiconductor for biosensors. As a proof-of-principle, we successfully employed our water-gated device to detect the well-known biotin-streptavidin binding event.

SUBMITTER: Molazemhosseini A 

PROVIDER: S-EPMC8411763 | biostudies-literature |

REPOSITORIES: biostudies-literature

Similar Datasets

| S-EPMC4707551 | biostudies-literature
| S-EPMC7931199 | biostudies-literature
| S-EPMC5512961 | biostudies-literature
| S-EPMC5605549 | biostudies-literature
| S-EPMC4066962 | biostudies-literature
| S-EPMC7767353 | biostudies-literature
| S-EPMC5301248 | biostudies-literature
| S-EPMC5700984 | biostudies-literature
| S-EPMC9059772 | biostudies-literature
| S-EPMC8758198 | biostudies-literature