Project description:Purpose of Review:Coronavirus disease 2019 (COVID-19), caused by severe acute respiratory syndrome-coronavirus-2 (SARS-CoV-2) infection, is a pandemic causing havoc globally. Currently, there are no Food and Drug Administration (FDA)-approved drugs to treat COVID-19. In the absence of effective treatment, off-label drug use, in lieu of evidence from published randomized, double-blind, placebo-controlled clinical trials, is common in COVID-19. Although it is vital to treat affected patients with antiviral drugs, there is a knowledge gap regarding the use of anti-inflammatory drugs in these patients. Recent Findings:Colchicine trials to combat inflammation in COVID-19 patients have not received much attention. We await the results of ongoing colchicine randomized controlled trials in COVID-19, evaluating colchicine's efficacy in treating COVID-19. Summary:This review gives a spotlight on colchicine's anti-inflammatory and antiviral properties and why colchicine may help fight COVID-19. This review summarizes colchicine's mechanism of action via the tubulin-colchicine complex. Furthermore, it discussed how colchicine interferes with several inflammatory pathways, including inhibition of neutrophil chemotaxis, adhesion, and mobilization; disruption of superoxide production, inflammasome inhibition, and tumor necrosis factor reduction; and its possible antiviral properties. In addition, colchicine dosing and pharmacokinetics, as well as drug interactions and how they relate to ongoing, colchicine in COVID-19 clinical trials, are examined.
Project description:Teicoplanin is an antibiotic that has been actively used in medical practice since 1986 to treat serious Gram-positive bacterial infections. Due to its efficiency and low cytotoxicity, teicoplanin has also been used for patients with complications, including pediatric and immunocompromised patients. Although teicoplanin is accepted as an antibacterial drug, its action against RNA viruses, including SARS-CoV2, has been proven in vitro. Here, we provide a thorough overview of teicoplanin usage in medicine, based on the current literature. We summarize infection sites treated with teicoplanin, concentrations of the antibiotic in different organs, and side effects. Finally, we summarize all available data about the antiviral activity of teicoplanin. We believe that, due to the extensive experience of teicoplanin usage in clinical settings to treat bacterial infections and its demonstrated activity against SARS-CoV2, teicoplanin could become a drug of choice in the treatment of COVID-19 patients. Teicoplanin stops the replication of the virus and at the same time avoids the development of Gram-positive bacterial co-infections.
Project description:Theophylline (3-methyxanthine) is a historically prominent drug used to treat respiratory diseases, alone or in combination with other drugs. The rapid onset of the COVID-19 pandemic urged the development of effective pharmacological treatments to directly attack the development of new variants of the SARS-CoV-2 virus and possess a therapeutical battery of compounds that could improve the current management of the disease worldwide. In this context, theophylline, through bronchodilatory, immunomodulatory, and potentially antiviral mechanisms, is an interesting proposal as an adjuvant in the treatment of COVID-19 patients. Nevertheless, it is essential to understand how this compound could behave against such a disease, not only at a pharmacodynamic but also at a pharmacokinetic level. In this sense, the quickest approach in drug discovery is through different computational methods, either from network pharmacology or from quantitative systems pharmacology approaches. In the present review, we explore the possibility of using theophylline in the treatment of COVID-19 patients since it seems to be a relevant candidate by aiming at several immunological targets involved in the pathophysiology of the disease. Theophylline down-regulates the inflammatory processes activated by SARS-CoV-2 through various mechanisms, and herein, they are discussed by reviewing computational simulation studies and their different applications and effects.
Project description:Designing anticoronavirus disease 2019 (anti-COVID-19) agents is the primary concern of medicinal chemists/drug designers nowadays. Repurposing of known active compounds against the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is a new effective and time-saving trend in anti-COVID-19 drug discovery. Thorough inhibition of the coronaviral-2 proteins (i.e., multitarget inhibition) is a possible powerful favorable strategy for developing effectively potent drugs for COVID-19. In this new research study, I succeeded to repurpose the two antioxidant polyhydroxy-1,3,4-oxadiazole compounds CoViTris2020 and ChloViD2020 as the first multitarget coronaviral protein blockers with extremely higher potencies (reach about 65 and 304 times, for CoViTris2020, and 20 and 93 times, for ChloViD2020, more potent than remdesivir and favipiravir, respectively). These two 2,5-disubstituted-1,3,4-oxadiazoles were computationally studied (through molecular docking in almost all SARS-CoV-2 proteins) and biologically assessed (through a newly established robust in vitro anti-COVID-19 assay) for their anticoronaviral-2 bioactivities. The data obtained from the docking investigation showed that both ligands promisingly exhibited very strong inhibitory binding affinities with almost all docked enzymes (e.g., they displayed extremely lower binding energies of -?12.00 and -?9.60 kcal/mol, respectively, with the SARS-CoV-2 RNA-dependent RNA polymerase "RdRp"). The results of the biological assay revealed that CoViTris2020 and ChloViD2020 significantly displayed very high anti-COVID-19 activities (anti-SARS-CoV-2 EC50?=?0.31 and 1.01 ?M, respectively). Further in vivo/clinical studies for the development of CoViTris2020 and ChloViD2020 as anti-COVID-19 medications are required. In brief, the ascent of CoViTris2020 and ChloViD2020 as the two lead members of the novel family of anti-COVID-19 polyphenolic 2,5-disubstituted-1,3,4-oxadiazole derivatives represents a promising hope in COVID-19 therapy. CoViTris2020 and ChloViD2020 inhibit SARS-CoV-2 life cycle with surprising EC50 values of 0.31 and 1.01 ?M, respectively. CoViTris2020 strongly inhibits coronaviral-2 RdRp with exceptionally lower inhibitory binding energy of - 12.00 kcal/mol.
Project description:Cathepsin C (CatC) is a cysteine dipeptidyl aminopeptidase that activates most of tissue-degrading elastase-related serine proteases. Thus, CatC appears as a potential therapeutic target to impair protease-driven tissue degradation in chronic inflammatory and autoimmune diseases. A depletion of proinflammatory elastase-related proteases in neutrophils is observed in patients with CatC deficiency (Papillon-Lefèvre syndrome). To address and counterbalance unwanted effects of elastase-related proteases, chemical inhibitors of CatC are being evaluated in preclinical and clinical trials. Neutrophils may contribute to the diffuse alveolar inflammation seen in acute respiratory distress syndrome (ARDS) which is currently a growing challenge for intensive care units due to the outbreak of the COVID-19 pandemic. Elimination of elastase-related neutrophil proteases may reduce the progression of lung injury in these patients. Pharmacological CatC inhibition could be a potential therapeutic strategy to prevent the irreversible pulmonary failure threatening the life of COVID-19 patients.