Ontology highlight
ABSTRACT: Background and aims
Nitrogen fixation in legumes requires tight control of carbon and nitrogen balance. Thus, legumes control nodule numbers via an autoregulation mechanism. 'Autoregulation of nodulation' mutants super-nodulate are thought to be carbon-limited due to the high carbon-sink strength of excessive nodules. This study aimed to examine the effect of increasing carbon supply on the performance of super-nodulation mutants.Methods
We compared the responses of Medicago truncatula super-nodulation mutants (sunn-4 and rdn1-1) and wild type to five CO2 levels (300-850 μmol mol-1). Nodule formation and nitrogen fixation were assessed in soil-grown plants at 18 and 42 d after sowing.Key results
Shoot and root biomass, nodule number and biomass, nitrogenase activity and fixed nitrogen per plant of all genotypes increased with increasing CO2 concentration and reached a maximum at 700 μmol mol-1. While the sunn-4 mutant showed strong growth retardation compared with wild-type plants, elevated CO2 increased shoot biomass and total nitrogen content of the rdn1-1 mutant up to 2-fold. This was accompanied by a 4-fold increase in nitrogen fixation capacity in the rdn1-1 mutant.Conclusions
These results suggest that the super-nodulation phenotype per se did not limit growth. The additional nitrogen fixation capacity of the rdn1-1 mutant may enhance the benefit of elevated CO2 for plant growth and N2 fixation.
SUBMITTER: Qiao Y
PROVIDER: S-EPMC8414924 | biostudies-literature |
REPOSITORIES: biostudies-literature