Project description:Human coronaviruses, especially SARS-CoV-2, are emerging pandemic infectious diseases with high morbidity and mortality in certain group of patients. In general, SARS-CoV-2 causes symptoms ranging from the common cold to severe conditions accompanied by lung injury, acute respiratory distress syndrome in addition to other organs' destruction. The main impact upon SARS-CoV-2 infection is damage to alveolar and acute respiratory failure. Thus, lung cancer patients are identified as a particularly high-risk group for SARS-CoV-2 infection and its complications. On the other hand, it has been reported that SARS-CoV-2 spike (S) protein binds to angiotensin-converting enzyme 2 (ACE-2), that promotes cellular entry of this virus in concert with host proteases, principally transmembrane serine protease 2 (TMPRSS2). Today, there are no vaccines and/or effective drugs against the SARS-CoV-2 coronavirus. Thus, manipulation of key entry genes of this virus especially in lung cancer patients could be one of the best approaches to manage SARS-CoV-2 infection in this group of patients. We herein provide a comprehensive and up-to-date overview of the role of ACE-2 and TMPRSS2 genes, as key entry elements as well as therapeutic targets for SARS-CoV-2 infection, which can help to better understand the applications and capacities of various remedial approaches for infected individuals, especially those with lung cancer.
Project description:BackgroundNor-BNI, GNTI and JDTic induce ? opioid antagonism that is delayed by hours and can persist for months. Other effects are transient. It has been proposed that these drugs may be slowly absorbed or distributed, and may dissolve in cell membranes, thus slowing elimination and prolonging their effects. Recent evidence suggests, instead, that they induce prolonged desensitization of the ? opioid receptor.MethodsTo evaluate these hypotheses, we measured relevant physicochemical properties of nor-BNI, GNTI and JDTic, and the timecourse of brain and plasma concentrations in mice after intraperitoneal administration (using LC-MS-MS).ResultsIn each case, plasma levels were maximal within 30 min and declined by >80% within four hours, correlating well with previously reported transient effects. A strong negative correlation was observed between plasma levels and the delayed, prolonged timecourse of ? antagonism. Brain levels of nor-BNI and JDTic peaked within 30 min, but while nor-BNI was largely eliminated within hours, JDTic declined gradually over a week. Brain uptake of GNTI was too low to measure accurately, and higher doses proved lethal. None of the drugs were highly lipophilic, showing high water solubility (> 45 mM) and low distribution into octanol (log D7.4 < 2). Brain homogenate binding was within the range of many shorter-acting drugs (>7% unbound). JDTic showed P-gp-mediated efflux; nor- BNI and GNTI did not, but their low unbound brain uptake suggests efflux by another mechanism.ConclusionsThe negative plasma concentration-effect relationship we observed is difficult to reconcile with simple competitive antagonism, but is consistent with desensitization. The very slow elimination of JDTic from brain is surprising given that it undergoes active efflux, has modest affinity for homogenate, and has a shorter duration of action than nor-BNI under these conditions. We propose that this persistence may result from entrapment in cellular compartments such as lysosomes.
Project description:BackgroundCOVID-19 can present with lymphopenia and extraordinary complex multiorgan pathologies that can trigger long-term sequela.AimsGiven that inflammasome products, like caspase-1, play a role in the pathophysiology of a number of co-morbid conditions, we investigated caspases across the spectrum of COVID-19 disease.Materials & methodsWe assessed transcriptional states of multiple caspases and using flow cytometry, the expression of active caspase-1 in blood cells from COVID-19 patients in acute and convalescent stages of disease. Non-COVID-19 subject presenting with various comorbid conditions served as controls.ResultsSingle-cell RNA-seq data of immune cells from COVID-19 patients showed a distinct caspase expression pattern in T cells, neutrophils, dendritic cells, and eosinophils compared with controls. Caspase-1 was upregulated in CD4+ T-cells from hospitalized COVID-19 patients compared with unexposed controls. Post-COVID-19 patients with lingering symptoms (long-haulers) also showed upregulated caspase-1activity in CD4+ T-cells that ex vivo was attenuated with a select pan-caspase inhibitor. We observed elevated caspase-3/7levels in red blood cells from COVID-19 patients compared with controls that was reduced following caspase inhibition.DiscussionOur preliminary results suggest an exuberant caspase response in COVID-19 that may facilitate immune-related pathological processes leading to severe outcomes. Further clinical correlations of caspase expression in different stages of COVID-19 will be needed.ConclusionPan-caspase inhibition could emerge as a therapeutic strategy to ameliorate or prevent severe COVID-19.
Project description:The ?-opioid receptor (MOR) is the primary target for opioid analgesics. MOR induces analgesia through the inhibition of second messenger pathways and the modulation of ion channels activity. Nevertheless, cellular excitation has also been demonstrated, and proposed to mediate reduction of therapeutic efficacy and opioid-induced hyperalgesia upon prolonged exposure to opioids. In this mini-perspective, we review the recently identified, functional MOR isoform subclass, which consists of six transmembrane helices (6 TM) and may play an important role in MOR signaling. There is evidence that 6 TM MOR signals through very different cellular pathways and may mediate excitatory cellular effects rather than the classic inhibitory effects produced by the stimulation of the major (7 TM) isoform. Therefore, the development of 6 TM and 7 TM MOR selective compounds represents a new and exciting opportunity to better understand the mechanisms of action and the pharmacodynamic properties of a new class of opioids.
Project description:The coronavirus disease 2019 (COVID-19) caused by coronavirus SARS-CoV-2 infection has become a global pandemic due to the high viral transmissibility and pathogenesis, bringing enormous burden to our society. Most patients infected by SARS-CoV-2 are asymptomatic or have mild symptoms. Although only a small proportion of patients progressed to severe COVID-19 with symptoms including acute respiratory distress syndrome (ARDS), disseminated coagulopathy, and cardiovascular disorders, severe COVID-19 is accompanied by high mortality rates with near 7 million deaths. Nowadays, effective therapeutic patterns for severe COVID-19 are still lacking. It has been extensively reported that host metabolism plays essential roles in various physiological processes during virus infection. Many viruses manipulate host metabolism to avoid immunity, facilitate their own replication, or to initiate pathological response. Targeting the interaction between SARS-CoV-2 and host metabolism holds promise for developing therapeutic strategies. In this review, we summarize and discuss recent studies dedicated to uncovering the role of host metabolism during the life cycle of SARS-CoV-2 in aspects of entry, replication, assembly, and pathogenesis with an emphasis on glucose metabolism and lipid metabolism. Microbiota and long COVID-19 are also discussed. Ultimately, we recapitulate metabolism-modulating drugs repurposed for COVID-19 including statins, ASM inhibitors, NSAIDs, Montelukast, omega-3 fatty acids, 2-DG, and metformin.
Project description:The exploration of non-toxic and cost-effective dietary components, such as epigallocatechin 3-gallate and myricetin, for health improvement and disease treatment has recently attracted substantial research attention. The recent COVID-19 pandemic has provided a unique opportunity for the investigation and identification of dietary components capable of treating viral infections, as well as gathering the evidence needed to address the major challenges presented by public health emergencies. Dietary components hold great potential as a starting point for further drug development for the treatment and prevention of SARS-CoV-2 infection owing to their good safety, broad-spectrum antiviral activities, and multi-organ protective capacity. Here, we review current knowledge of the characteristics-chemical composition, bioactive properties, and putative mechanisms of action-of natural bioactive dietary flavonoids with the potential for targeting SARS-CoV-2 and its variants. Notably, we present promising strategies (combination therapy, lead optimization, and drug delivery) to overcome the inherent deficiencies of natural dietary flavonoids, such as limited bioavailability and poor stability.
Project description:The absence of effective drugs for COVID-19 prevention and treatment requires the search for new candidates among approved medicines. Fundamental studies and clinical observations allow us to approach an understanding of the mechanisms of damage and protection from exposure to SARS-CoV-2, to identify possible points of application for pharmacological interventions. In this review we presented studies on the anti-inflammatory, antioxidant, and immunotropic properties of melatonin. We have attempted to present scientifically proven mechanisms of action for the potential therapeutic use of melatonin during SARS-CoV-2 infection. A wide range of pharmacological properties allows its inclusion as an effective addition to the methods of prevention and treatment of COVID-19.
Project description:Opioid-induced constipation (OIC) is one of the most troublesome and the most common effects of opioid use leading to deterioration in quality of life of the patients and also has potentially deleterious repercussions on adherence and compliance to opioid therapy. With the current guidelines advocating liberal use of opioids by physicians even for non-cancer chronic pain, the situation is further complicated as these individuals are not undergoing palliative care and hence there cannot be any justification to subject these patients to the severe constipation brought on by opioid therapy which is no less debilitating than the chronic pain. The aim in these patients is to prevent the opioid-induced constipation but at the same time allow the analgesic activity of opioids. Many drugs have been used with limited success but the most specific among them were the peripherally acting mu opioid receptor antagonists (PAMORA). Methylnaltrexone and alvimopan were the early drugs in this group but were not approved for oral use in OIC. However naloxegol, the latest PAMORA has been very recently approved as the first oral drug for OIC. This article gives an overview of OIC, its current management and more specifically the development and approval of naloxegol, including pharmacokinetics, details of various clinical trials, adverse effects and its current status for the management of OIC.
Project description:COVID-19 pandemic caused by the Severe acute respiratory syndrome coronavirus 2 (SARS- CoV-2) has inflicted a global health challenge. Although the overwhelming escalation of mortality seen during the initial phase of the pandemic has reduced, emerging variants of SARS-CoV-2 continue to impact communities worldwide. Several studies have highlighted the association of gene specific epigenetic modifications in host cells with the pathogenesis and severity of the disease. Therefore, alongside the investigations into the virology and pathogenesis of SARS-CoV-2 infection, understanding the epigenetic mechanisms related to the disease is crucial for the rational design of effective targeted therapies. Here, we discuss the interaction of SARS-CoV-2 with the various epigenetic regulators and their subsequent contribution to the risk of disease severity and dysfunctional immune responses. Finally, we also highlight the use of epigenetically targeted drugs for the potential therapeutic interventions capable of eliminating viral infection and/or build effective immunity against it.
Project description:Asthma is a chronic inflammatory disorder of the airways that is a major global burden on both individuals and healthcare systems. Despite guideline-directed treatment, a significant proportion of patients with asthma do not achieve control. This review focuses on the potential use of long-acting anticholinergics as bronchodilators in the treatment of asthma, with results published from clinical trials of glycopyrrolate, umeclidinium and tiotropium. The tiotropium clinical trial programme is the most advanced, with data available from a number of phase II and III studies of tiotropium as an add-on to inhaled corticosteroid maintenance therapy, with or without a long-acting β2-agonist, in patients across asthma severities. Recent studies using the Respimat Soft Mist inhaler have identified 5 µg once daily as the preferred dosing regimen, which has shown promising results in adults, adolescents and children with asthma. Tiotropium Respimat has recently been incorporated into the Global Initiative for Asthma 2015 treatment strategy as a recommended alternative therapy at steps 4 and 5 in adult patients with a history of exacerbations. The increasing availability of evidence from ongoing and future clinical trials will be beneficial in determining where long-acting anticholinergic agents fit in future treatment guidelines across a variety of patient populations and disease severities.