Project description:Transients in the composition of Ni@NiO x core-shell co-catalysts deposited on SrTiO3 are discussed on the basis of state-of-the-art continuous analysis of photocatalytic water splitting, and post-XPS and TEM analyses. The formation of excessive hydrogen (H2:O2 ≫ 2) in the initial stages of illumination demonstrates oxidation of Ni(OH)2 to NiOOH (nickel oxyhydroxide), with the latter catalyzing water oxidation. A disproportionation reaction of Ni and NiOOH, yielding Ni(OH)2 with residual embedded Ni, occurs when illumination is discontinued, which explains repetitive transients in (excess) hydrogen and oxygen formation when illumination is reinitiated.
Project description:Large-scale growth of low-cost, efficient, and durable non-noble metal-based electrocatalysts for water splitting is crucial for future renewable energy systems. Atomic layer deposition (ALD) provides a promising route for depositing uniform thin coatings of electrocatalysts, which are useful in many technologies, including the splitting of water. In this communication, we report the growth of a NiO/Ni catalyst directly on carbon fiber paper by atomic layer deposition and report subsequent reduction and oxidation annealing treatments. The 10-20 nm NiO/Ni nanoparticle catalysts can reach a current density of 10 mA·cm-2 at an overpotential of 189 mV for hydrogen evolution reactions and 257 mV for oxygen evolution reactions with high stability. We further successfully achieved a water splitting current density of 10 mA·cm-2 at 1.78 V using a typical NiO/Ni coated carbon fiber paper two-electrode setup. The results suggest that nanoparticulate NiO/Ni is an active, stable, and noble-metal-free electrocatalyst, which facilitates a method for future water splitting applications.
Project description:Sonophotocatalysis has garnered significant attention due to its potential to enhance advanced oxidation processes, particularly water splitting, by employing materials with combined sonocatalytic and photocatalytic properties. In this study, we synthesized and investigated core-shell BaTiO3@SrTiO3 nanowires (BST NWs) with varying Sr/Ba molar ratios (2.5:7.5, 5.0:5.0, 7.5:2.5 mM, denoted as BST-1, BST-2, and BST-3, respectively) as catalysts for hydrogen production through water splitting. The piezoelectric nanowires demonstrated hydrogen evolution via both sonocatalysis and photocatalysis. In the sonophotocatalysis process, the ultrasonic vibration induced mechanical forces on the BST nanowires, thereby establishing a built-in electric field. This built-in electric field facilitated the effective separation of photo-generated charge carriers and prolonged their lifetimes, leading to a synergistic enhancement of hydrogen evolution. The pristine BaTiO3 and SrTiO3 nanowires exhibited relatively low hydrogen evolution rates (HER) of 7.0 and 6.0 µmol·g-1min-1, respectively. In contrast, the core-shell nanowires exhibited a substantial improvement in the hydrogen evolution rate. The HER increased with the addition of Sr, and BST-1, BST-2, and BST-3 achieved HERs of 12.0, 13.5, and 18.0 µmol·g-1min-1, respectively. The superior performance of BST-3 nanowires can be attributed to their highest piezoelectric potential and largest surface area. Additionally, BST-3 nanowires demonstrated remarkable stability over multiple cycles, validating their practical applicability as efficient photocatalysts.
Project description:The development of low-cost, high-efficiency, and stable bifunctional electrocatalysts toward the hydrogen evolution reaction (HER) and oxygen evolution reaction (OER) is of paramount importance for large-scale water splitting. Here, we develop a new strategy for the first design and synthesis of a NiO@Ni decorated WS2 nanosheet array on carbon cloth (NiO@Ni/WS2/CC) composite. This composite serves as a unique three-dimensional (3D) synergistic electrocatalyst that not only combines the intrinsic properties of individual NiO@Ni and WS2, but also exhibits significantly improved HER and OER activities when compared to that of pure NiO@Ni and WS2. This electrocatalyst possesses Pt-like activity for HER and exhibits better OER performance than that for commercial RuO2, as well as demonstrating superior long-term durability in alkaline media. Furthermore, it enables an alkaline electrolyzer with a current density of 10 mA cm-2 at a cell voltage as 1.42 V, which is the lowest one among all reported values to date. The excellent performance is mainly attributed to the unique 3D configuration and multicomponent synergies among NiO, Ni, and WS2. Our findings provide a new idea to design advanced bifunctional catalysts for water splitting.
Project description:Carbon quantum dots were prepared by a simple chemical process using activated carbon as carbon source. The as-prepared carbon quantum dots are fine with a narrow size distribution and show excellent hydrophilicity. The carbon quantum dots were combined with SrTiO3 nanoparticles through a simple impregnation process to obtain a carbon quantum dots/SrTiO3 nanocomposite. The photocatalytic reaction rate of carbon quantum dots/SrTiO3 nanocomposite is about 5.5 times as large as that of pure SrTiO3 in the degradation of rhodamine B under sunlight irradiation. The enhanced performance in the degradation of rhodamine B may be attributed to the interfacial transfer of photogenerated electrons from SrTiO3 to carbon quantum dots, leading to effective charge separation in SrTiO3. Carbon quantum dots show potential applications in high-efficiency photocatalyst design.
Project description:Earth-abundant and efficient bifunctional electrocatalysts for both hydrogen evolution reaction (HER) and oxygen evolution reaction (OER) are highly significant for renewable energy systems. However, the performance of existing electrocatalysts is usually restricted by the low electroic conductivity and the limited amount of exposed active sites. In this work, (Fe0.2Ni0.8)0.96S tubular spheres supported on Ni foam have been prepared by a sulfuration of FeNi layered double hydroxide spheres grown on Ni foam. Benefiting from the unique tubular sphere architecture, the rich inner defects and the enhanced electron interactions between Fe, Ni and S, this electrocatalyst shows low overpotential of 48 mV for HER at 10 mA cm-2 in 1.0 mol L-1 KOH solution, which is one of the lowest value of non-previous electrocatalyts for HER in alkaline electrolyte. Furthermore, assembled this versatile electrode as an alkaline electrolyzer for overall water splitting, a current density of 10 mA cm-2 is achieved at a low cell voltage of 1.56 V, and reach up to 30 mA cm-2 only at an operating cell voltage of 1.65 V.
Project description:In this work, a micron-sized three-way nitrogen-doped carbon tube covered with MoS2 nanosheets (TNCT@MoS2) was synthesized and applied in photocatalytic water splitting without any sacrificial agents for the first time. The micron-sized three-way nitrogen-doped carbon tube (TNCT) was facilely synthesized by the calcination of commercial sponge. The MoS2 nanosheets were assembled on the carbon tubes by a hydrothermal method. Compared with MoS2, the TNCT@MoS2 heterostructures showed higher H2 evolution rate, which was ascribed to the improved charge separation efficiency and the increased active sites afforded by the TNCT.
Project description:Photocatalytic water splitting is a promising method for the production of clean energy and searching for efficient photocatalysts has received extensive attention. Fabricating type-II heterojunctions is an effective approach to improve the photocatalytic efficiency. Based on the band edge positions and lattice parameters, we found that several kinds of monochalcogenide monolayers can be used to fabricate type-II heterojunctions with C2N monolayers. C2N/GaTe and C2N/InTe van der Waals (vdW) heterojunctions were investigated as potential photocatalysts for water splitting by means of first-principles computations. Both are type-II heterojunctions, and could promote the efficient spatial separation of electron-hole pairs. Their band edges straddle water redox potentials, satisfying the requirements for photocatalytic water splitting. Besides, the high carrier mobility of C2N/GaTe and C2N/InTe heterojunctions implies that the transfer of carriers to reactive sites is easy, and the recombination probability of photo-generated carriers is reduced. The Gibbs free energy calculations indicate that C2N/GaTe and C2N/InTe heterojunctions, especially C2N/InTe, exhibit high catalytic performance towards hydrogen and oxygen evolution reactions. Particularly, C2N/InTe exhibits a direct band gap with strong absorption in both visible and near ultraviolet regions, indicating that it is a very promising candidate for photocatalytic water splitting. This work would provide a new idea for the development of type-II heterojunctions for photocatalytic water splitting.
Project description:Bifunctional electrocatalysts for efficient hydrogen generation from water splitting must overcome both the sluggish water dissociation step of the alkaline hydrogen evolution half-reaction (HER) and the kinetic barrier of the anodic oxygen evolution half-reaction (OER). Nickel phosphides are a promising catalysts family and are known to develop a thin active layer of oxidized Ni in an alkaline medium. Here, Ni12P5 was recognized as a suitable platform for the electrochemical production of γ-NiOOH─a particularly active phase─because of its matching crystallographic structure. The incorporation of tungsten by doping produces additional surface roughness, increases the electrochemical surface area (ESCA), and reduces the energy barrier for electron-coupled water dissociation (the Volmer step for the formation of Hads). When serving as both the anode and cathode, the 15% W-Ni12P5 catalyst provides an overall water splitting current density of 10 mA cm-2 at a cell voltage of only 1.73 V with good durability, making it a promising bifunctional catalyst for practical water electrolysis.
Project description:For efficient electrolysis of water for hydrogen generation or other value-added chemicals, it is highly relevant to develop low-temperature synthesis of low-cost and high-efficiency metal sulfide electrocatalysts on a large scale. Herein, we construct a new core-branch array and binder-free electrode by growing Ni3S2 nanoflake branches on an atomic-layer-deposited (ALD) TiO2 skeleton. Through induced growth on the ALD-TiO2 backbone, cross-linked Ni3S2 nanoflake branches with exposed {[Formula: see text]} high-index facets are uniformly anchored to the preformed TiO2 core forming an integrated electrocatalyst. Such a core-branch array structure possesses large active surface area, uniform porous structure, and rich active sites of the exposed {[Formula: see text]} high-index facet in the Ni3S2 nanoflake. Accordingly, the TiO2@Ni3S2 core/branch arrays exhibit remarkable electrocatalytic activities in an alkaline medium, with lower overpotentials for both oxygen evolution reaction (220 mV at 10 mA cm-2) and hydrogen evolution reaction (112 mV at 10 mA cm-2), which are better than those of other Ni3S2 counterparts. Stable overall water splitting based on this bifunctional electrolyzer is also demonstrated.