Project description:Self-assembly of nanoparticles can be mediated by polymers, but has so far led almost exclusively to nanoparticle aggregates that are amorphous. Here, we employed Coulombic interactions to generate a range of composite materials from mixtures of charged nanoparticles and oppositely charged polymers. The assembly behavior of these nanoparticle/polymer composites depends on their order of addition: polymers added to nanoparticles give rise to stable aggregates, but nanoparticles added to polymers disassemble the initially formed aggregates. The amorphous aggregates were transformed into crystalline ones by transiently increasing the ionic strength of the solution. The morphology of the resulting crystals depended on the length of the polymer: short polymer chains mediated the self-assembly of nanoparticles into strongly faceted crystals, whereas long chains led to pseudospherical nanoparticle/polymer assemblies, within which the crystalline order of nanoparticles was retained.
Project description:Acetylenic phosphaalkenes (APAs) are used as a novel type of ligands for the stabilization of gold nanoparticles (AuNP). As demonstrated by a variety of experimental and analytical methods, both structural features of the APA, that is, the P=C as well as the C≡C units are essential for NP stabilization. The presence of intact APAs on the AuNP is demonstrated by surface-enhanced Raman spectroscopy (SERS), and first principle calculations indicate that bonding occurs most likely at defect sites on the Au surface. AuNP-bound APAs are in chemical equilibrium with free APAs in solution, leading to a dynamic behavior that can be explored for facile place-exchange reactions with other types of anchor groups such as thiols or more weakly binding phosphine ligands.
Project description:Novel biotin-polyethylene glycol (biotin-PEG) gold nanoparticle probes have been synthesized and used as universal constructs for the detection of protein (prostate-specific antigen, PSA) and nucleic acid targets (microRNAs) from a single sample. Microarray assays based upon these probes enabled sensitive detection of biomarker targets (50 fM for nucleic acid targets and 1 pg/μL for the PSA target). Ways of detecting biomarkers, including nucleic acids and proteins, are necessary for the clinical diagnosis of many diseases, but currently available diagnostic platforms rely primarily on the independent detection of proteins or nucleic acids. In addition to the economic benefits associated with the use of a single platform to detect both classes of analytes, studies have shown that the simultaneous identification of multiple classes of biomarkers in the same sample could be useful for the detection and management of early stage diseases, especially when sample amounts are limited. Therefore, these new probes and the assays based upon them open the door for high-sensitivity combination-target assays for studying and tracking biological pathways and diseases.
Project description:Nanoparticle-based sensor arrays have been used to distinguish a wide range of biomolecular targets through pattern recognition. Such biosensors require selective receptors that generate a unique response pattern for each analyte. The tunable surface properties of gold nanoparticles make these systems excellent candidates for the recognition process. Likewise, the metallic core makes these particles fluorescence superquenchers, facilitating transduction of the binding event. In this report we analyze the role of gold nanoparticles as receptors in differentiating a diversity of important human proteins, and the role of the polymer/biopolymer fluorescent probes for transducing the binding event. A structure-activity relationship analysis of both the probes and the nanoparticles is presented, providing direction for the engineering of future sensor systems.
Project description:Polymer-nanoparticle networks have potential applications in molecular electronics and nanophononics. In this work, we use all-atom molecular dynamics to reveal the fundamental mechanisms of thermal transport in polymer-linked gold nanoparticle (AuNP) dimers at the molecular level. Attachment of the polymers to AuNPs of varying sizes allows the determination of effects from the flexibility of the chains when their ends are not held fixed. We report heat conductance (G) values for six polymers-viz. polyethylene, poly(p-phenylene), polyacene, polyacetylene, polythiophene, and poly(3,4-ethylenedioxythiophene)-that represent a broad range of stiffness. We address the multimode effects of polymer type, AuNP size, polymer chain length, polymer conformation, system temperature, and number of linking polymers on G. The combination of the mechanisms for phonon boundary scattering and intrinsic phonon scattering has a strong effect on G. We find that the values of G are larger for conjugated polymers because of the stiffness in their backbones. They are also larger in the low-temperature region for all polymers owing to the quenching of segmental rotations at low temperature. Our simulations also suggest that the total G is additive as the number of linking polymers in the AuNP dimer increases from 1 to 2 to 3.
Project description:The immune response of macrophage cells to internalized polyvalent nucleic acid-functionalized gold nanoparticles has been studied. This study finds that the innate immune response (as measured by interferon-beta levels) to densely functionalized, oligonucleotide-modified nanoparticles is significantly less (up to a 25-fold decrease) when compared to a lipoplex carrying the same DNA sequence. The magnitude of this effect is inversely proportional to oligonucleotide density. It is proposed that the enzymes involved in recognizing foreign nucleic acids and triggering the immune response are impeded due to the local surface environment of the particle, in particular high charge density. The net effect is an intracelluar gene regulation agent that elicits a significantly lower cellular immune response than conventional DNA transfection materials.
Project description:Gold nanoparticles (AuNPs) possess attractive electronic, optical, and catalytic properties, enabling many potential applications. Poly(N-isopropyl acrylamide) (PNIPAAm) is a temperature-responsive polymer that changes its hydrophilicity upon a slight temperature change, and combining PNIPAAm with AuNPs allows us to modulate the properties of AuNPs by temperature. In a previous study, we proposed a simpler method for designing PNIPAAm-AuNP hybrid microgels, which used an AuNP monomer with polymerizable groups. The size of AuNPs is the most important factor influencing their catalytic performance, and numerous studies have emphasized the importance of controlling the size of AuNPs by adjusting their stabilizer concentration. This paper focuses on the effect of AuNP size on the catalytic activity of PNIPAAm-AuNP hybrid microgels prepared via the copolymerization of N-isopropyl acrylamide and AuNP monomers with different AuNP sizes. To quantitatively evaluate the catalytic activity of the hybrid microgels, we monitored the reduction of 4-nitrophenol to 4-aminophenol using the hybrid microgels with various AuNP sizes. While the hybrid microgels with an AuNP size of 13.0 nm exhibited the highest reaction rate and the apparent reaction rate constant (kapp) of 24.2 × 10-3 s-1, those of 35.9 nm exhibited a small kapp of 1.3 × 10-3 s-1. Thus, the catalytic activity of the PNIPAAm-AuNP hybrid microgel was strongly influenced by the AuNP size. The hybrid microgels with various AuNP sizes enabled the reversibly temperature-responsive on-off regulation of the reduction reaction.
Project description:A facile strategy to prepare GO-based nanocomposites with both gold nanoparticles (AuNPs) and ferrocene (Fc) moieties was developed. The surface of GO was modified with PFcMAss homopolymer by surface-initiated atom transfer radical polymerization of a new methacrylate monomer of 2-((2-(methacryloyloxy)ethyl)disulfanyl)ethyl ferrocene-carboxylate (FcMAss), consisting of disulfide as an anchoring group for stabilizing AuNPs and Fc group as an additional functionality. AuNPs with an average diameter of about 4.1 nm were formed in situ on the surface of PFcMAss-decorated GO (GO-PFcMAss) via Brust-Schiffrin method to give GO-PFcMAss-AuNPs multifunctional nanocomposites bearing GO, AuNPs and Fc groups. The obtained nanocomposites were characterized by X-ray photoelectron spectroscopy (XPS), X-ray diffraction (XRD), transmission electron microscopy (TEM) and atomic force microscopy (AFM). Since disulfide-containing polymers, rather than the commonly used thiol-containing compounds, were employed as ligands to stabilize AuNPs, much more stabilizing groups were attached onto the surface of GO, and thus more AuNPs were able to be introduced onto the surface of GO. Besides, polymeric chains on the surface of GO endowed GO-PFcMAss-AuNPs nanocomposites with excellent colloidal stability, and the usage of a disulfide group provides possibility to efficiently incorporate additional functionalities by easily modifying structure of disulfide-based monomer.
Project description:The localization of light known as Anderson localization is a common phenomenon characterizing aggregates of metallic nanostructures. The electromagnetic energy of visible light can be localized inside nanostructures below the diffraction limit by converting the optical modes into nonradiative surface plasmon resonances. The energy of the confined photons is correlated to the size and shape of the nanostructured system. In this work, we studied the photoluminescence dependence of aggregates of 14 nm diameter gold nanoparticles (AuNPs) synthesized by drop-casting a liquid suspension on two different substrates of glass and quartz. The AuNP aggregates were characterized by electron microscopy, X-ray diffraction and X-ray photoelectron spectroscopy. The dielectric constant of the surrounding medium plays a crucial role in determining the aggregate geometry, which affects the Anderson localization of light in the aggregates and hence causes a red-shift in the plasmonic resonance and in the photoluminescence emission. The geometry of the gold nanoparticle aggregates determine the strength of the Anderson localization, and hence, the light emission from the aggregates. The photoluminescence lifetime was found to be dependent on the AuNP aggregate geometry and the dielectric constant of the medium.
Project description:Early diagnosis is one of the most important factors in determining the prognosis in cancer. Sensitive detection and quantification of tumour-specific biomarkers have the potential to improve significantly our diagnostic capability. Here, we introduce a triggerable aptamer-based nanostructure based on an oligonucleotide/gold nanoparticle architecture that selectively disassembles in the presence of the biomarker of interest; its optimization is based also on in-silico determination of the aptamer nucleotides interactions with the protein of interest. We demonstrate this scheme for the case of Prostate Specific Membrane Antigen (PSMA) and PSMA derived from PSMA-positive exosomes. We tested the disassembly of the system by diameter and count rate measurements in dynamic light scattering, and by inspection of its plasmon resonance shift, upon addition of PSMA, finding appreciable differences down to the sub-picomolar range; this points towards the possibility that this approach may lead to sensors competitive with diagnostic biochemical assays that require enzymatic amplification. More generally, this scheme has the potential to be applied to a broad range of pathologies with specific identified biomarkers.