Ontology highlight
ABSTRACT: Background
Acinetobacter baumannii is a successful nosocomial pathogen, causing severe, life-threatening infections in hospitalized patients, including pneumonia and bloodstream infections. The spread of carbapenem-resistant Acinetobacter baumannii (CRAB) strains is a major health threat worldwide. The successful spread of CRAB is mostly due to its highly plastic genome. Although some virulence factors associated with CRAB have been uncovered, many mechanisms contributing to its success are not fully understood.Methods
Here we describe strains of CRAB that were isolated from fulminant cases in 2 hospitals in Israel. These isolates show a rare hypermucoid (HM) phenotype and were investigated using phenotypic assays, comparative genomics, and an in vivo Galleria mellonella model.Results
The 3 isolates belonged to the ST3 international clonal type and were closely related to each other, as shown by Fourier-transform infrared spectroscopy and phylogenetic analyses. These isolates possessed thickened capsules and a dense filamentous extracellular polysaccharides matrix as shown by transmission electron microscopy (TEM), and overexpressed the capsule polysaccharide synthesis pathway-related wzc gene.Conclusions
The HM isolates possessed a unique combination of virulence genes involved in iron metabolism, protein secretion, adherence, and membrane glycosylation. HM strains were more virulent than control strains in 2 G. mellonella infection models. In conclusion, our findings demonstrated several virulence factors, all present in 3 CRAB isolates with rare hypermucoid phenotypes.
SUBMITTER: Rakovitsky N
PROVIDER: S-EPMC8423469 | biostudies-literature |
REPOSITORIES: biostudies-literature