Project description:Iron overload adversely affects patients with myelodysplastic syndromes (MDS), but benefits of iron chelation therapy have not been clearly demonstrated. We examined the association between deferasirox (DFX) therapy and mortality in transfusion-receiving Medicare patients.MDS patients from 2005 to 2008 were identified using ICD-9 codes from 100% Medicare claims. Patients receiving ?20 blood units were observed until death or end of study. Marginal structural models were used for estimation.3926 patients (10.1% used DFX) were observed for a mean of 48.8 weeks. Each incremental week of DFX was associated with a significant reduction in mortality risk (hazard ratio [HR]: 0.989; 95% CI: 0.983-0.996; p = 0.001).DFX therapy is associated with a reduced mortality risk among older MDS patients who received a minimum transfusion threshold.
Project description:Myelodysplastic syndromes (MDS) are clonal hematopoietic stem cell disorders associated with progression to leukemia and poor survival. Clonal hematopoiesis in people without an MDS diagnosis carries an increased risk of cardiovascular death. Many clonally restricted mutations are shared between patients with MDS and those with non-MDS clonal hematopoiesis; therefore, we evaluated the risk of cardiovascular death among patients with MDS. We evaluated adults with MDS in the Surveillance, Epidemiology, and End Results database of the National Cancer Institute and compared them with the general population living in the same states. We grouped histological subtypes of MDS into lower-, intermediate-, and higher-risk disease. The primary outcomes were overall survival and primary cause of death (COD) as reported to state registries. A total of 21 372 patients with MDS between 2001 and 2011 died during follow-up with a known COD. The rate of death due to cardiovascular disease (CVD) was 4613 per 100 000 person-years, compared with 2091 in the age- and-sex-adjusted US population (standardized mortality ratio, 2.21). At 24 months, the cumulative incidence of death attributed to MDS or leukemia was 23% vs 8% for CVD. Among those alive at 60 months, 27% eventually died of CVD compared with 29% from MDS or leukemia; those with lower-risk disease who survived >60 months had more deaths attributed to cardiovascular causes (30%; 95% confidence interval [CI], 26.7-33.2%) than MDS itself (24%; 95% CI, 21.4-27.5%). Patients with MDS are more likely to die of cardiovascular causes than the general population. Modifying cardiovascular risk factors, especially among those with lower-risk disease, may be warranted for MDS-related clinical care.
Project description:Prior studies have investigated patients' characteristics, treatments, and outcomes for older adults with myelodysplastic syndromes, but most failed to distinguish chronic myelomonocytic leukemia. Recognizing potentially important differences between the diseases, we undertook a population-based comparison of baseline characteristics, treatments, and outcomes between older adults with chronic myelomonocytic leukemia and myelodysplastic syndromes. The patients' data were obtained from Surveillance Epidemiology and End Results registry data from 2001-2005, linked to Medicare claims. Baseline characteristics, treatment (red blood cell transfusions, hematopoietic growth factors, hypomethylating agents, chemotherapy or transplantation), progression to acute myeloid leukemia, and overall survival were compared using bivariate techniques. Multivariate logistic regression estimated differences in treatments received. Cox proportional hazard models estimated the effects of chronic myelomonocytic leukemia relative to myelodysplastic syndromes on progression-free survival. A larger proportion of patients with chronic myelomonocytic leukemia (n=792), compared to patients with myelodysplastic syndromes (n=7,385), failed to receive any treatment (25% versus 15%; P<0.0001), or only received red blood cell transfusions (19.8% versus 16.7%; P=0.037). A larger percentage of patients with chronic myelomonocytic leukemia progressed to acute myeloid leukemia (42.6% versus 15.5%, respectively; P<0.0001), with shorter time to progression. Chronic myelomonocytic leukemia patients had a shorter median survival (13.3 versus 23.3 months; P<0.0001) and lower 3-year survival rate (19% versus 36%; P<0.0001). Adjusted estimates, controlling for baseline characteristics and selected treatments, indicate that chronic myelomonocytic leukemia was associated with an increased risk of progression to acute myeloid leukemia or death (HR 2.22; P<0.0001), compared to myelodysplastic syndromes. In conclusion, chronic myelomonocytic leukemia is less frequently treated in older adults and is associated with worse outcomes, even after controlling for the patients' baseline characteristics and selected treatments. Our data suggest the need for continued evaluation of the biological differences between these diseases and clinical trials targeting chronic myelomonocytic leukemia.
Project description:Genome-wide expression and methylation profiling identifies novel targets with aberrant hypermethylation and reduced expression in low-risk myelodysplastic syndromes (MDSs). Gene expression profiling signatures may be used to classify the subtypes of Myelodysplastic syndrome (MDS) patients. However, there are few reports on the global methylation status in MDS. The integration of genome-wide epigenetic regulatory marks with gene expression levels would provide additional information regarding the biological differences between MDS and healthy controls. Gene expression and methylation status were measured using high-density microarrays. A total of 552 differentially methylated CpG loci were identified as being present in low-risk MDS; hypermethylated genes were more frequent than hypomethylated genes. In addition, mRNA expression profiling identified 1005 genes that significantly differed between low-risk MDS and the control group. Integrative analysis of the epigenetic and expression profiles revealed that 66.7% of the hypermethylated genes were underexpressed in low-risk MDS cases. Gene network analysis revealed molecular mechanisms associated with the low-risk MDS group, including altered apoptosis pathways. The two key apoptotic genes BCL2 and ETS1 were identified as silenced genes. In addition, the immune response and micro RNA biogenesis were affected by the hypermethylation and underexpression of IL27RA and DICER1. Our integrative analysis revealed that aberrant epigenetic regulation is a hallmark of low-risk MDS patients and could have a central role in these diseases. Low-risk MDS patients and age-matched controls without haematological malignancies were included in the study. Mononuclear cells were isolated from bone marrow samples of low-risk MDS patients and controls by density gradient (Ficoll). A cohort of 18 patients with low-risk MDS and seven controls were included in a simultaneous integrative study of methylation and expression, while the whole series was used as a control group of expression data.
Project description:Genome-wide expression and methylation profiling identifies novel targets with aberrant hypermethylation and reduced expression in low-risk myelodysplastic syndromes (MDSs). Gene expression profiling signatures may be used to classify the subtypes of Myelodysplastic syndrome (MDS) patients. However, there are few reports on the global methylation status in MDS. The integration of genome-wide epigenetic regulatory marks with gene expression levels would provide additional information regarding the biological differences between MDS and healthy controls. Gene expression and methylation status were measured using high-density microarrays. A total of 552 differentially methylated CpG loci were identified as being present in low-risk MDS; hypermethylated genes were more frequent than hypomethylated genes. In addition, mRNA expression profiling identified 1005 genes that significantly differed between low-risk MDS and the control group. Integrative analysis of the epigenetic and expression profiles revealed that 66.7% of the hypermethylated genes were underexpressed in low-risk MDS cases. Gene network analysis revealed molecular mechanisms associated with the low-risk MDS group, including altered apoptosis pathways. The two key apoptotic genes BCL2 and ETS1 were identified as silenced genes. In addition, the immune response and micro RNA biogenesis were affected by the hypermethylation and underexpression of IL27RA and DICER1. Our integrative analysis revealed that aberrant epigenetic regulation is a hallmark of low-risk MDS patients and could have a central role in these diseases. Low-risk MDS patients and age-matched controls without haematological malignancies were included in the study. Mononuclear cells were isolated from bone marrow samples of low-risk MDS patients and controls by density gradient (Ficoll). A cohort of 18 patients with low-risk MDS and seven controls were included in a simultaneous integrative study of methylation (using Methylated CpG Island Amplification and Microarrays, MCAM) and expression (using Affymetrix microarrays HG-U133 Plus 2), while the whole series was used as a control group of expression data.
Project description:BACKGROUND:Current prevention guidelines recommend using the Pooled Cohort Equation (PCE) for 10-year atherosclerotic cardiovascular disease (CVD) risk assessment. However, the PCE has serious limitations in older adults: it excludes heart failure (HF) hospitalization, estimates 10-year risk, which may not be the most relevant time frame, and is not indicated for individuals age >79 years. OBJECTIVES:This study sought to determine whether adding biomarkers to PCE variables improves global CVD (coronary heart disease, stroke, and HF) risk prediction in older adults over a shorter time period. METHODS:Atherosclerosis Risk in Communities study participants without prevalent CVD including HF (n = 4,760; age 75.4 ± 5.1 years) were followed for incident global CVD events. Adding N-terminal pro-B-type natriuretic peptide, high-sensitivity cardiac troponin T, and high-sensitivity C-reactive protein to the PCE and a "lab model" with the biomarkers, age, race, and gender were assessed for prediction improvement. Area under the receiver operating characteristic curve (AUC) and net reclassification index (NRI) were calculated. RESULTS:Over median follow-up of ∼4 years, incident HF was the leading CVD event (n = 193 vs. 118 coronary heart disease and 81 stroke events). Compared to the PCE, each biomarker improved risk prediction. The largest improvement in risk prediction metrics was with the addition of all 3 biomarkers (ΔAUC 0.103; continuous NRI 0.484). The lab model also performed better than the PCE model (ΔAUC 0.091, continuous NRI 0.355). CONCLUSIONS:Adding biomarkers to the PCE or a simpler "lab model" improves short-term global CVD risk prediction and may be useful to inform short-term preventive strategies in older adults.
Project description:We conducted a prospective observational study of fit adults aged 60-75 with advanced MDS, enrolled hierarchically for adverse MDS risk (intermediate-2 or high-risk international prognostic score [IPSS], low or intermediate-1 IPSS with poor-risk cytogenetics, or therapy-related MDS) or standard risk with severe cytopenia. A total of 290 patients enrolled at two centers: 175 for adverse risk and 115 for standard risk with severe cytopenia. 113 underwent HCT after a median of 5 months; median follow-up for all was 39.5 months. In univariable analyses, the hazard ratio (HR) for death comparing HCT with no HCT was 0.84 (p = 0.30). The HR for death was 0.64 (p = 0.04) for HCT ≤ 5 months after enrollment and 1.20 (p = 0.39) for HCT > 5 months. In multivariable analyses controlling for age, gender, ECOG performance status, cytogenetic risk, and IPSS risk group, HR for death was 0.75 (p = 0.13) for HCT compared to no HCT, 0.57 (p = 0.01) for adverse MDS risk and 1.33 (p = 0.36) for standard risk with severe cytopenia. In this large, prospective cohort of fit older adults with advanced MDS, we found that survival was significantly improved if HCT was performed early or for adverse risk disease but not for standard risk disease with severe cytopenia.
Project description:The majority of myelodysplastic syndrome (MDS) patients belong to the International Prognostic Scoring System (IPSS) and IPSS-revised (IPSS-R) lower-risk categories. Their precise diagnostics and prognostic stratification is often a challenge, but may ensure the optimization of therapy. The availability of diverse treatment options has significantly improved the quality of life and survival of this group of patients. Anemia is the most relevant cytopenia in terms of frequency and symptoms in lower-risk MDS, and may be treated successfully with erythropoietic stimulating agents, provided a careful selection is performed on the basis of IPSS-R, endogenous erythropoietin levels, and transfusion independence. Doses and duration of therapy of erythropoietic-stimulating agents (ESAs) are critical to determine efficacy. In case a patient fails ESA treatment, the available options may include lenalidomide (approved for del5q positive cases), hypomethylating agents, and a rather large number of experimental agents, whose clinical trials should be offered to a larger number of MDS patients. The choice for second-line treatment must take into account biologic, cytogenetic, and molecular-identified characteristics of individual patients, as well as frailty and comorbidities. Other cytopenias are less frequently presenting as isolated. Specific therapy for thrombocytopenia has been proposed in experimental clinical trials with thrombomimetic agents that have shown good efficacy, but raised some safety concern. Although neutropenia is targeted symptomatically with growth factor supportive care, the immunosuppressive treatments are indicated mainly for pancytopenic, hypoplastic lower-risk MDS; they are not widely used because of their toxicity, despite the fact that they may induce responses. Finally, hematopoietic stem cell transplant is the curative option also for lower-risk MDS and timing should be carefully evaluated, balancing toxicity and the possibility of survival advantage. Finally, even when considered suitable for lower-risk MDS, transplant application is limited to the rarer fit and younger MDS patient.
Project description:Carfilzomib was approved for the treatment of multiple myeloma in 2012 and since then there have been concerns for cardiovascular toxicity from its use. With this study, we aim to further study the hazards and underlying risk factors for cardiovascular adverse events associated with carfilzomib. This study was conducted using Surveillance, Epidemiology, and End Results (SEER)-Medicare data set of multiple myeloma from 2001 to 2015. Data were analyzed for hazards ratio of cardiovascular adverse events between carfilzomib users and nonusers. We identified 7330 patients with multiple myeloma of whom 815 were carfilzomib users. Carfilzomib users had a statistically significant hazard ratio of 1.41 with p < 0.0001 for all cardiovascular adverse events as compared to nonusers. Carfilzomib use was significantly associated with increased risk of heart failure (HR 1.47, p = 0.0002), ischemic heart disease (HR 1.45, p = 0.0002), and hypertension (HR 3.33, p < 0.0001), whereas there was no association between carfilzomib use and cardiac conduction disorders (arrhythmia and heart blocks). Carfilzomib users were at higher risk of new-onset edema (HR 5.09, p < 0.0001), syncope (HR 4.27, p < 0.0001), dyspnea (HR 1.33, p < 0.0001), and chest pain (HR 1.18, p < 0.0001) as compared to carfilzomib nonusers. Age above 75 years, preexisting cardiovascular disease, obesity, and twice a week carfilzomib schedule were significant risk factors associated with cardiovascular adverse events in carfilzomib users. The median time of the onset for all cardiovascular adverse events was 3.1 months. This study has identified a significantly higher likelihood of cardiovascular adverse events in elderly Medicare patients receiving carfilzomib.
Project description:Genome-wide expression and methylation profiling identifies novel targets with aberrant hypermethylation and reduced expression in low-risk myelodysplastic syndromes (MDSs). Gene expression profiling signatures may be used to classify the subtypes of Myelodysplastic syndrome (MDS) patients. However, there are few reports on the global methylation status in MDS. The integration of genome-wide epigenetic regulatory marks with gene expression levels would provide additional information regarding the biological differences between MDS and healthy controls. Gene expression and methylation status were measured using high-density microarrays. A total of 552 differentially methylated CpG loci were identified as being present in low-risk MDS; hypermethylated genes were more frequent than hypomethylated genes. In addition, mRNA expression profiling identified 1005 genes that significantly differed between low-risk MDS and the control group. Integrative analysis of the epigenetic and expression profiles revealed that 66.7% of the hypermethylated genes were underexpressed in low-risk MDS cases. Gene network analysis revealed molecular mechanisms associated with the low-risk MDS group, including altered apoptosis pathways. The two key apoptotic genes BCL2 and ETS1 were identified as silenced genes. In addition, the immune response and micro RNA biogenesis were affected by the hypermethylation and underexpression of IL27RA and DICER1. Our integrative analysis revealed that aberrant epigenetic regulation is a hallmark of low-risk MDS patients and could have a central role in these diseases.