Unknown

Dataset Information

0

Identification of distinct tumor cell populations and key genetic mechanisms through single cell sequencing in hepatoblastoma.


ABSTRACT: Hepatoblastoma (HB) is the most common primary liver malignancy of childhood, and molecular investigations are limited and effective treatment options for chemoresistant disease are lacking. There is a knowledge gap in the investigation of key driver cells of HB in tumor. Here we show single cell ribonucleic acid sequencing (scRNAseq) analysis of human tumor, background liver, and patient derived xenograft (PDX) to demonstrate gene expression patterns within tumor and to identify intratumor cell subtype heterogeneity to define differing roles in pathogenesis based on intracellular signaling in pediatric HB. We have identified a driver tumor cell cluster in HB by genetic expression which can be examined to define disease mechanism and treatments. Identification of both critical mechanistic pathways combined with unique cell populations provide the basis for discovery and investigation of novel treatment strategies in vitro and in vivo.

SUBMITTER: Bondoc A 

PROVIDER: S-EPMC8426487 | biostudies-literature | 2021 Sep

REPOSITORIES: biostudies-literature

altmetric image

Publications

Block Copolymer Vesicles with Tunable Membrane Thicknesses and Compositions Prepared by Aqueous Seeded Photoinitiated Polymerization-Induced Self-Assembly at Room Temperature.

Zhang Qichao Q   Wang Ruiming R   Chen Ying Y   Zhang Li L   Tan Jianbo J  

Langmuir : the ACS journal of surfaces and colloids 20220217 8


Block copolymer vesicles with diverse functionalities and intrinsic hollow structures have received considerable attention due to their broad applications in biomedical fields, including drug delivery, bioimaging, theranostics, gene therapy, etc. However, efficient preparation of block copolymer vesicles with tunable membrane thicknesses and compositions under mild conditions is still a challenge. Herein, we report an aqueous seeded photoinitiated polymerization-induced self-assembly (photo-PISA  ...[more]