Project description:Since the beginning of the SARS-CoV-2 pandemic, studies on the variants and sublineages stand out, mainly in the cases of reinfection in a short period. In this study, we describe a case of infection by BA.1.1 sublineage in an individual from Southern Brazil. The same patient acquired reinfection with sublineage BA.2 within 16 days after the first detection. The viral extraction and RT-qPCR were performed on the samples LMM72045 (collected in May 2022) and LMM72044 (collected in June 2022). After the confirmation of SARS-CoV-2 infection, we conducted the sequencing and viral genome analysis. This case of reinfection affected a 52-year-old male patient, without comorbidities, with three doses of vaccines against COVID-19, showing symptoms on May 19. These symptoms lasted for approximately six days. The patient returned to work activities on May 30. However, on June 4, the patient felt a new round of clinical signs that lasted for approximately seven days. Analysis of the viral genomes recovered from patients' clinical samples revealed that the two COVID-19 episodes were related to two divergent VOC Omicron sublineages, namely, BA.1.1 for the first round of symptoms and BA.2 for the second infection. Based on our findings, we can say that the present case of reinfection is the shortest described so far.
Project description:An instance of sequential infection of an individual with, firstly, the Delta variant and secondly a Delta-sub-lineage has been identified. The individual was found positive for the AY.26 lineage 22 days after being found positive for the Delta [B.1.617.2] variant. The viruses associated with the cases showed dramatic genomic difference, including 31 changes that resulted in deletions or amino acid substitutions. Seven of these differences were observed in the Spike protein. The patient in question was between 30 and 35 years old and had no underlying health conditions. Though singular, this case illustrates the possibility that infection with the Delta variant may not itself be fully protective against a population of SARS-CoV-2 variants that are becoming increasingly diverse.
Project description:From February 26, 2020 to March 11, 2021, coronavirus disease 2019 (COVID-19) pandemic resulted in 11,439,558 cases and 277,102 deaths in Brazil. Among them, 2,195,130 cases and 63,965 deaths occurred in Sao Paulo State, Southeast Brazil. The recent emergence and rise of new variants of SARS-CoV-2 is of concern because of their higher transmissibility and possible association with more severe disease. Cases of SARS-CoV-2 reinfections have been described since December 2020 in Brazil. This report describes two cases of COVID-19 reinfection, that occurred five and six months after the first infection, during the second wave of the pandemic in Sao Paulo State. Both patients presented mild symptoms in the two COVID-19 episodes and different lineages of SARS-CoV-2 were identified: B.1.1.33 and B.1.1.28 lineages in case 1 and B1.1.128 and P. 2 lineages in case 2.
Project description:ObjectivesTo date, reported SARS-CoV-2 reinfection cases are mainly from strains belonging to different clades. As the pandemic advances, a few lineages have become dominant in certain areas leading to reinfections by similar strains. Here, we report a reinfection case within the same clade of the initial infection in a symptomatic 28-year-old-male in Quito-Ecuador.MethodsInfection was detected by reverse transcription-polymerase chain reaction, and immune response evaluated by antibody testing. Whole-genome sequencing was performed and phylogenetic analysis conducted to determine relatedness.ResultsBoth the infection and the reinfection strains were assigned as Nextstrain 20B, Pangolin lineage B.1.1 and GISAID clade O. Our analysis indicated 4-6 fold more nucleotide changes than are expected for reactivation or persistence compared with the natural rate of SARS-CoV-2 mutation (∼2-3 nucleotide changes per month), thus supporting reinfection. Furthermore, approximately 3 months after the second infection, COVID-19 antibodies were not detectable in the patient, suggesting potential vulnerability to a third infection.ConclusionsOur results showed evidence of SARS-CoV-2 reinfection within the same clade in Ecuador, indicating that previous exposure to SARS-CoV-2 does not guarantee immunity in all cases.
Project description:Illustrated by a clinical case supplemented by epidemiologic data, early reinfections with SARS-CoV-2 Omicron BA.1 after infection with Delta variant, and reinfection with Omicron BA.2 after Omicron BA.1 infection, can occur within 60 days, especially in young, unvaccinated persons. The case definition of reinfection, which influences retesting policies, should be reconsidered.
Project description:As public health guidelines throughout the world have relaxed in response to vaccination campaigns against SARS-CoV-2, it is likely that SARS-CoV-2 will remain endemic, fueled by the rise of more infectious SARS-CoV-2 variants. Moreover, in the setting of waning natural and vaccine immunity, reinfections have emerged across the globe, even among previously infected and vaccinated individuals. As such, the ability to detect reexposure to and reinfection by SARS-CoV-2 is a key component for global protection against this virus and, more importantly, against the potential emergence of vaccine escape mutations. Accordingly, there is a strong and continued need for the development and deployment of simple methods to detect emerging hot spots of reinfection to inform targeted pandemic response and containment, including targeted and specific deployment of vaccine booster campaigns. In this study, we identify simple, rapid immune biomarkers of reinfection in rhesus macaques, including IgG3 antibody levels against nucleocapsid and FcγR2A receptor binding activity of anti-RBD antibodies, that are recapitulated in human reinfection cases. As such, this cross-species analysis underscores the potential utility of simple antibody titers and function as price-effective and scalable markers of reinfection to provide increased resolution and resilience against new outbreaks. IMPORTANCE As public health and social distancing guidelines loosen in the setting of waning global natural and vaccine immunity, a deeper understanding of the immunological response to reexposure and reinfection to this highly contagious pathogen is necessary to maintain public health. Viral sequencing analysis provides a robust but unrealistic means to monitor reinfection globally. The identification of scalable pathogen-specific biomarkers of reexposure and reinfection, however, could significantly accelerate our capacity to monitor the spread of the virus through naive and experienced hosts, providing key insights into mechanisms of disease attenuation. Using a nonhuman primate model of controlled SARS-CoV-2 reexposure, we deeply probed the humoral immune response following rechallenge with various doses of viral inocula. We identified virus-specific humoral biomarkers of reinfection, with significant increases in antibody titer and function upon rechallenge across a range of humoral features, including IgG1 to the receptor binding domain of the spike protein of SARS-CoV-2 (RBD), IgG3 to the nucleocapsid protein (N), and FcγR2A receptor binding to anti-RBD antibodies. These features not only differentiated primary infection from reexposure and reinfection in monkeys but also were recapitulated in a sequencing-confirmed reinfection patient and in a cohort of putatively reinfected humans that evolved a PCR-positive test in spite of preexisting seropositivity. As such, this cross-species analysis using a controlled primate model and human cohorts reveals increases in antibody titers as promising cross-validated serological markers of reinfection and reexposure.
Project description:Infection with severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) has become pandemic and the duration of protective immunity to the virus is unknown. Cases of persons reinfected with the virus are being reported with increasing frequency. At present it is unclear how common reinfection with SARS-CoV-2 is and how long serum antibodies and virus-specific T cells persist after infection. For many other respiratory virus infections, including influenza and the seasonal coronaviruses that cause colds, serum antibodies persist for only months to a few years and reinfections are very common. Here we review what is known about the duration of immunity and reinfection with coronaviruses, including SARS-CoV-2, as well as the duration of immunity to other viruses and virus vaccines. These findings have implications for the need of continued protective measures and for vaccines for persons previously infected with SARS-CoV-2.