Project description:Convalescent plasma (CP) recurs as a frontline treatment in epidemics because it is available as soon as there are survivors. The COVID-19 pandemic represented the first large-scale opportunity to shed light on the mechanisms of action, safety, and efficacy of CP using modern evidence-based medicine approaches. Studies ranging from observational case series to randomized controlled trials (RCTs) have reported highly variable efficacy results for COVID-19 CP (CCP), resulting in uncertainty. We analyzed variables associated with efficacy, such as clinical settings, disease severity, CCP SARS-CoV-2 (severe acute respiratory syndrome coronavirus 2) antibody levels and function, dose, timing of administration (variously defined as time from onset of symptoms, molecular diagnosis, diagnosis of pneumonia, or hospitalization, or by serostatus), outcomes (defined as hospitalization, requirement for ventilation, clinical improvement, or mortality), CCP provenance and time for collection, and criteria for efficacy. The conflicting trial results, along with both recent WHO guidelines discouraging CCP usage and the recent expansion of the FDA emergency use authorization (EUA) to include outpatient use of CCP, create confusion for both clinicians and patients about the appropriate use of CCP. A review of 30 available RCTs demonstrated that signals of efficacy (including reductions in mortality) were more likely if the CCP neutralizing titer was >160 and the time to randomization was less than 9 days. The emergence of the Omicron variant also reminds us of the benefits of polyclonal antibody therapies, especially as a bridge to the development and availability of more specific therapies.
Project description:BackgroundThere is still a lack of consensus on the efficacy of convalescent plasma (CP) treatment in COVID-19 patients. We performed a systematic review and meta-analysis to investigate the efficacy of CP vs standard treatment/non-CP on clinical outcomes in COVID-19 patients.MethodsCochrane Library, PubMed, EMBASE and ClinicalTrials.gov were searched from December 2019 to 16 July 2021, for data from clinical trials and observational studies. The primary outcome was all-cause mortality. Risk estimates were pooled using a random-effect model. Risk of bias was assessed by Cochrane Risk of Bias tool for clinical trials and Newcastle-Ottawa Scale for observational studies.ResultsIn total, 18 peer-reviewed clinical trials, 3 preprints and 26 observational studies met the inclusion criteria. In the meta-analysis of 18 peer-reviewed trials, CP use had a 31% reduced risk of all-cause mortality compared with standard treatment use (pooled risk ratio [RR] = 0.69, 95% confidence interval [CI]: 0.56-0.86, P = .001, I2 = 50.1%). Based on severity and region, CP treatment significantly reduced risk of all-cause mortality in patients with severe and critical disease and studies conducted in Asia, pooled RR = 0.61, 95% CI: 0.47-0.81, P = .001, I2 = 0.0%; pooled RR = 0.67, 95% CI: 0.49-0.92, P = .013, I2 = 0.0%; and pooled RR = 0.62, 95% CI: 0.48-0.80, P < .001, I2 = 20.3%, respectively. The meta-analysis of observational studies showed the similar results to the clinical trials.ConclusionsConvalescent plasma use was associated with reduced risk of all-cause mortality in severe or critical COVID-19 patients. However, the findings were limited with a moderate degree of heterogeneity. Further studies with well-designed and larger sample size are needed.
Project description:The collection and clinical use of COVID-19 convalescent plasma (CCP) as a therapy for COVID-19 infection is under development and early use in many centers worldwide. We conducted an international survey of centers undertaking studies of CCP to provide understanding of the common themes and differences between them. Sixty-four studies in 22 countries were identified from clinical trial registries and personal contacts of the authors. Twenty of the 64 centers (31%) from 12 of 22 countries (55%) responded to the survey. Of the 20 studies, 11 were randomized controlled trials (RCTs), and 9 were case series. Only 4 of the RCTs plan to recruit 400 patients or more, and only 3 RCTs were blinded. The majority of studies will study the effect of CCP on sick patients requiring hospitalization and those requiring critical care, and none is examining the role of CCP in non-infected at-risk individuals. A wide variety of primary and secondary outcomes are being used. The donor eligibility criteria among the studies are very similar, and the use of plasmapheresis for the collection of CCP is almost universal. The planned dose of CCP ranges from as little as 200 mL to well over 1 L, but is 400 to 800 mL or 4 mL/kg or greater in all the RCTs. There is considerable variability in donor antibody testing with no consistency regarding the cut-off for antibody titer for acceptance as CCP or the use of pathogen-inactivation. Our survey provides an understanding of the similarities and differences among the studies of CCP, and that by virtue of their design some studies may be more informative than others.
Project description:The recent outbreak of COVID-19 in the world is currently a big threat to global health and economy. Convalescent plasma has been confirmed effective against the novel corona virus in preliminary studies. In this paper, we first described the therapeutic schedule, antibody detection method, indications, contraindications of the convalescent plasmas and reported the effectiveness of convalescent plasma therapy by a retrospective cohort study.
Project description:In the absence of an effective vaccine or monoclonal therapeutic, transfer of convalescent plasma (CCP) was proposed early in the SARS-CoV-2 pandemic as an easily accessible therapy. However, despite the global excitement around this historically valuable therapeutic approach, results from CCP trials have been mixed and highly debated. Unlike other therapeutic interventions, CCP represents a heterogeneous drug. Each CCP unit is unique and collected from an individual recovered COVID-19 patient, making the interpretation of therapeutic benefit more complicated. While the prevailing view in the field would suggest that it is administration of neutralizing antibodies via CCP that centrally provides therapeutic benefit to newly infected COVID-19 patients, many hospitalized COVID-19 patients already possess neutralizing antibodies. Importantly, the therapeutic benefit of antibodies can extend far beyond their simple ability to bind and block infection, especially related to their ability to interact with the innate immune system. In our work we deeply profiled the SARS-CoV-2-specific Fc-response in CCP donors, along with the recipients prior to and after CCP transfer, revealing striking SARS-CoV-2 specific Fc-heterogeneity across CCP units and their recipients. However, CCP units possessed more functional antibodies than acute COVID-19 patients, that shaped the evolution of COVID-19 patient humoral profiles via distinct immunomodulatory effects that varied by pre-existing SARS-CoV-2 Spike (S)-specific IgG titers in the patients. Our analysis identified surprising influence of both S and Nucleocapsid (N) specific antibody functions not only in direct antiviral activity but also in anti-inflammatory effects. These findings offer insights for more comprehensive interpretation of correlates of immunity in ongoing large scale CCP trials and for the design of next generation therapeutic design.