Molecular cloning, expression, and functional features of IGF1 splice variants in sheep.
Ontology highlight
ABSTRACT: Insulin-like growth factor 1 (IGF1), also known as somatomedin C, is essential for the regulation of animal growth and development. In many species, the IGF1 gene can be alternatively spliced into multiple transcripts, encoding different pre-pro-IGF1 proteins. However, the exact alternative splicing patterns of IGF1 and the sequence information of different splice variants in sheep are still unclear. In this study, four splice variants (class 1-Ea, class 1-Eb, class 2-Ea, and class 2-Eb) were obtained, but no IGF1 Ec, similar to that found in other species, was discovered. Bioinformatics analysis showed that the four splice variants shared the same mature peptide (70 amino acids) and possessed distinct signal peptides and E peptides. Tissue expression analysis indicated that the four splice variants were broadly expressed in all tested tissues and were most abundantly expressed in the liver. In most tissues and stages, the expression of class 1-Ea was highest, and the expression of other splice variants was low. Overall, levels of the four IGF1 splice variants at the fetal and lamb stages were higher than those at the adult stage. Overexpression of the four splice variants significantly increased fibroblast proliferation and inhibited apoptosis (P < 0.05). In contrast, silencing IGF1 Ea or IGF1 Eb with siRNA significantly inhibited proliferation and promoted apoptosis (P < 0.05). Among the four splice variants, class 1-Ea had a more evident effect on cell proliferation and apoptosis. In summary, the four ovine IGF1 splice variants have different structures and expression patterns and might have different biological functions.
Project description:KCNN4 channels that provide the driving force for cAMP- and Ca(2+)-induced anion secretion are present in both apical and basolateral membranes of the mammalian colon. However, only a single KCNN4 has been cloned. This study was initiated to identify whether both apical and basolateral KCNN4 channels are encoded by the same or different isoforms. Reverse transcriptase-PCR (RT-PCR), real-time quantitative-PCR (RT-QPCR), and immunofluorescence studies were used to clone and identify tissue-specific expression of KCNN4 isoforms. Three distinct KCNN4 cDNAs that are designated as KCNN4a, KCNN4b, and KCNN4c encoding 425, 424, and 395 amino acid proteins, respectively, were isolated from the rat colon. KCNN4a differs from KCNN4b at both the nucleotide and the amino acid level with distinct 628 bp at the 3'-untranslated region and an additional glutamine at position 415, respectively. KCNN4c differs from KCNN4b by lacking the second exon that encodes a 29 amino acid motif. KCNN4a and KCNN4b/c are identified as smooth muscle- and epithelial cell-specific transcripts, respectively. KCNN4b and KCNN4c transcripts likely encode basolateral (40 kDa) and apical (37 kDa) membrane proteins in the distal colon, respectively. KCNN4c, which lacks the S2 transmembrane segment, requires coexpression of a large conductance K(+) channel beta-subunit for plasma membrane expression. The KCNN4 channel blocker TRAM-34 inhibits KCNN4b- and KCNN4c-mediated (86)Rb (K(+) surrogate) efflux with an apparent inhibitory constant of 0.6 +/- 0.1 and 7.8 +/- 0.4 muM, respectively. We conclude that apical and basolateral KCNN4 K(+) channels that regulate K(+) and anion secretion are encoded by distinct isoforms in colonic epithelial cells.
Project description:Molecular cloning efforts have provided primary amino acid sequence and signal transduction data for a large collection of serotonin receptor subtypes. These include five 5-HT1-like receptors, three 5-HT2 receptors, one 5-HT3 receptor, two 5-HT5 receptors, one 5-HT6 receptor and one 5-HT7 receptor. Molecular biological information on the 5-HT4 receptor is notably absent from this list. We now report the cloning of the pharmacologically defined 5-HT4 receptor. Using degenerate oligonucleotide primers, we identified a rat brain PCR fragment which encoded a '5-HT receptor-like' amino acid sequence. The corresponding full length cDNA was isolated from a rat brain cDNA library. Transiently expressed in COS-7 cells, this receptor stimulates adenylyl cyclase activity and is sensitive to the benzamide derivative cisapride. The response is also blocked by ICS-205930. Interestingly, we isolated two splice variants of the receptor, 5-HT4L and 5-HT4S, differing in the length and sequence of their C-termini. In rat brain, the 5-HT4S transcripts are restricted to the striatum, but the 5-HT4L transcripts are expressed throughout the brain, except in the cerebellum where it was barely detectable. In peripheral tissues, differential expression was also observed in the atrium of the heart where only the 5-HT4S isoform was detectable.
Project description:BACKGROUND: The genetic basis of telomere length heterogeneity among mammalian species is still not well understood. Recently, a gene named regulator of telomere length elongation helicase (RTEL) was identified and predicted to be an essential participant in species-specific telomere length regulation in two murine species. To obtain broader insights into its structure and biological functions and to ascertain whether RTEL is also a candidate gene in the regulation of telomere length diversity in other mammalian species, data from other mammals may be helpful. RESULTS: Here we report the cDNA cloning, genomic structure, chromosomal location, alternative splicing pattern, expression distribution and DNA methylation profile of the bovine homolog of RTEL. The longest transcript of bovine RTEL is 4440 nt, encompassing 24.8 kb of genomic sequence that was mapped to chromosome 13q2.2. It encodes a conserved helicase-like protein containing seven characterized helicase motifs in the first 750 aa and a PIP box in the C-terminus. Four splice variants were identified within the transcripts in both the coding and 5'-untranslated regions; Western blot revealed that the most abundant splice variant SV-1 was translated to a truncated isoform of RTEL. The different 5'UTRs imply alternative transcription start sites in the promoter; Bovine RTEL was transcribed at the blastocyst stage, and expression levels were highest in adult testis, liver and ovary. DNA methylation analysis of tissues that differed significantly in expression level indicated that relatively low DNA methylation is associated with higher expression. CONCLUSION: In this study, we have identified and characterized a bovine RTEL homolog and obtained basic information about it, including gene structure, expression distribution, splice variants and profile of DNA methylation around two putative transcription start sites. These data may be helpful for further comparative and functional analysis of RTEL in mammals.
Project description:The NET [noradrenaline (norepinephrine) transporter], an Na+/Cl--dependent neurotransmitter transporter, has several isoforms produced by alternative splicing in the C-terminal region, each differing in expression and function. We characterized the two major isoforms of human NET, hNET1, which has seven C-terminal amino acids encoded by exon 15, and hNET2, which has 18 amino acids encoded by exon 16, by site-directed mutagenesis in combination with NE (noradrenaline) uptake assays and cell surface biotinylation. Mutants lacking one third or more of the 24 amino acids encoded by exon 14 exhibited neither cell surface expression nor NE uptake activity, with the exception of the mutant lacking the last eight amino acids of hNET2, whose expression and uptake resembled that of the WT (wild-type). A triple alanine replacement of a candidate motif (ENE) in this region mimicked the influences of the truncation. Deletion of either the last three or another four amino acids of the C-terminus encoded by exon 15 in hNET1 reduced the cell surface expression and NE uptake, whereas deletion of all seven residues reduced the transport activity but did not affect the cell surface expression. Replacement of RRR, an endoplasmic reticulum retention motif, by alanine residues in the C-terminus of hNET2 resulted in a similar expression and function compared with the WT, while partly recovering the effects of the mutation of ENE. These findings suggest that in addition to the function of the C-terminus, the common proximal region encoded by exon 14 regulates the functional expression of splice variants, such as hNET1 and hNET2.
Project description:The SLC4A10 gene, which is highly expressed in the mammalian brain, contains two known alternative splicing units, inserts A and B, and is theoretically capable of producing four NBCn2 splice variants: NBCn2-A, -B, -C, and -D. By immunoprecipitation and western blotting, a previous study showed the putative NBCn2-D to be expressed predominantly in the subcortex (SCX) and medulla (MD) of mouse brain. However, no evidence has been provided, in any species, for the existence of a full-length transcript encoding NBCn2-D. In the present study, we report for the first time the cloning of the full-length cDNAs encoding NBCn2-D from mouse SCX and MD. Based on the frequency of bacterial colonies obtained after PCR, we conclude that in SCX, the NBCn2-A transcript is dominant, whereas in MD, NBCn2-B is dominant. NBCn2-D is the least abundant transcript in each of these two brain regions. An analysis based upon the present PCR data as well as the previous immunoprecipitation/western-blot data suggests the following prevalence of NBCn2 variants in total mouse brain: NBCn2-A (~83%), NBCn2-B (~10%), NBCn2-C (~5%), and NBCn2-D (~2%). We also estimate the prevalence of each variant in each of the five brain regions (i.e., cerebral cortex, SCX, cerebellum, hippocampus, and MD). We hypothesize that the expression of different NBCn2 splice variants is characteristic of specific tissue/cells.
Project description:Phosphodiesterase 11A (PDE11A) is a recently identified family of cAMP and cGMP hydrolyzing enzymes. Thus far, a single splice variant designated as PDE11A1 has been reported. In this study, we identify and characterize two additional splice variants of PDE11A, PDE11A2 and PDE11A3. The full-length cDNAs are 2,141 bp for PDE11A2 and 2205 bp for PDE11A3. The ORF of PDE11A2 predicts a protein of 576 aa with a molecular mass of 65.8 kDa. The ORF of PDE11A3 predicts a protein of 684 aa with a molecular mass of 78.1 kDa. Comparison of the PDE11A2 sequence with that of PDE11A1 indicates an additional 86 aa at the N terminus of PDE11A2. Part of this sequence extends the potential cGMP binding region (GAF domain) present in PDE11A1. Compared with PDE11A2, PDE11A3 has an additional 108 N-terminal amino acids. Sequence analysis of PDE11A3 indicates the presence of another GAF domain in this region. This diversification of regulatory sequences in the N-terminal region of PDE11A splice variants suggests the interesting possibility of differential regulation of these enzymes. Recombinant PDE11A2 and -A3 proteins expressed in the Baculovirus expression system have the ability to hydrolyze both cAMP and cGMP. The K(m) values for cAMP hydrolysis are 3.3 microM and 5.7 microM for PDE11A2 and PDE11A3, respectively. The K(m) values for cGMP hydrolysis are 3.7 microM and 4.2 microM for PDE11A2 and PDE11A3, respectively. Both PDEs showed a V(max) ratio for cAMP/cGMP of approximately 1.0. PDE11A2 is sensitive to dipyridamole, with an IC(50) of 1.8 microM, and to zaprinast, with an IC(50) of 28 microM. PDE11A3 demonstrated similar pattern of inhibitor sensitivity with IC(50) values of 0.82 and 5 microM for dipyridamole and zaprinast, respectively.
Project description:The AOX1 gene, which encodes an alternative oxidase, was isolated from the genomic DNA library of Candida albicans. The gene encodes a polypeptide consisting of 379 amino acids with a calculated molecular mass of 43,975 Da. The aox1/aox1 mutant strain did not show cyanide-resistant respiration under normal conditions but could still induce cyanide-resistant respiration when treated with antimycin A. The measurement of respiratory activity and Western blot analysis suggested the presence of another AOX. When C. albicans AOX1 was expressed in alternative oxidase-deficient Saccharomyces cerevisiae, it could confer cyanide-resistant respiration on S. cerevisiae.
Project description:IntroductionSerological diagnosis of brucellosis is still a great challenge due to the infeasibility of discriminating infected animals from vaccinated ones, so it is necessary to search for diagnostic biomarkers for differential diagnosis of brucellosis.Material and methodsCell division cycle 42 (Cdc42) from sheep (Ovis aries) (OaCdc42) was cloned by rapid amplification of cDNA ends (RACE), and then tissue distribution and differential expression levels of OaCdc42 mRNA between infected and vaccinated sheep were analysed by RT-qPCR.ResultsThe full-length cDNA of OaCdc42 was 1,609 bp containing an open reading frame (ORF) of 576 bp. OaCdc42 mRNAs were detected in the heart, liver, spleen, lung, kidneys, rumen, small intestine, skeletal muscles, and buffy coat, and the highest expression was detected in the small intestine. Compared to the control, the levels of OaCdc42 mRNA from sheep infected with Brucella melitensis or sheep vaccinated with Brucella suis S2 was significantly different (P < 0.01) after 40 and 30 days post-inoculation, respectively. However, the expression of OaCdc42 mRNA was significantly different between vaccinated and infected sheep (P < 0.05 or P < 0.01) on days: 14, 30, and 60 post-inoculation, whereas no significant difference (P > 0.05) was noted 40 days post-inoculation. Moreover, the expression of OaCdc42 from both infected and vaccinated sheep showed irregularity.ConclusionOaCdc42 is not a good potential diagnostic biomarker for differential diagnosis of brucellosis in sheep.
Project description:The advent of RNA-seq technologies has switched the paradigm of genetic analysis from a genome to a transcriptome-based perspective. Alternative splicing generates functional diversity in genes, but the precise functions of many individual isoforms are yet to be elucidated. Gene Ontology was developed to annotate gene products according to their biological processes, molecular functions and cellular components. Despite a single gene may have several gene products, most annotations are not isoform-specific and do not distinguish the functions of the different proteins originated from a single gene. Several approaches have tried to automatically annotate ontologies at the isoform level, but this has shown to be a daunting task. We have developed ISOGO (ISOform + GO function imputation), a novel algorithm to predict the function of coding isoforms based on their protein domains and their correlation of expression along 11,373 cancer patients. Combining these two sources of information outperforms previous approaches: it provides an area under precision-recall curve (AUPRC) five times larger than previous attempts and the median AUROC of assigned functions to genes is 0.82. We tested ISOGO predictions on some genes with isoform-specific functions (BRCA1, MADD,VAMP7 and ITSN1) and they were coherent with the literature. Besides, we examined whether the main isoform of each gene -as predicted by APPRIS- was the most likely to have the annotated gene functions and it occurs in 99.4% of the genes. We also evaluated the predictions for isoform-specific functions provided by the CAFA3 challenge and results were also convincing. To make these results available to the scientific community, we have deployed a web application to consult ISOGO predictions (https://biotecnun.unav.es/app/isogo). Initial data, website link, isoform-specific GO function predictions and R code is available at https://gitlab.com/icassol/isogo.
Project description:Tumor cells tend to metabolize glucose through aerobic glycolysis instead of oxidative phosphorylation in mitochondria. One of the rate limiting enzymes of glycolysis is 6-phosphofructo-1-kinase, which is allosterically activated by fructose 2,6-bisphosphate which in turn is produced by 6-phosphofructo-2-kinase/fructose-2,6-bisphosphatase (PFK-2/FBPase-2 or PFKFB). Mounting evidence suggests that cancerous tissues overexpress the PFKFB isoenzyme, PFKFB3, being causing enhanced proliferation of cancer cells. Initially, six PFKFB3 splice variants with different C-termini have been documented in humans. More recently, additional splice variants with varying N-termini were discovered the functions of which are to be uncovered. Glioblastoma is one of the deadliest forms of brain tumors. Up to now, the role of PFKFB3 splice variants in the progression and prognosis of glioblastomas is only partially understood. In this study, we first re-categorized the PFKFB3 splice variant repertoire to simplify the denomination. We investigated the impact of increased and decreased levels of PFKFB3-4 (former UBI2K4) and PFKFB3-5 (former variant 5) on the viability and proliferation rate of glioblastoma U87 and HEK-293 cells. The simultaneous knock-down of PFKFB3-4 and PFKFB3-5 led to a decrease in viability and proliferation of U87 and HEK-293 cells as well as a reduction in HEK-293 cell colony formation. Overexpression of PFKFB3-4 but not PFKFB3-5 resulted in increased cell viability and proliferation. This finding contrasts with the common notion that overexpression of PFKFB3 enhances tumor growth, but instead suggests splice variant-specific effects of PFKFB3, apparently with opposing effects on cell behaviour. Strikingly, in line with this result, we found that in human IDH-wildtype glioblastomas, the PFKFB3-4 to PFKFB3-5 ratio was significantly shifted towards PFKFB3-4 when compared to control brain samples. Our findings indicate that the expression level of distinct PFKFB3 splice variants impinges on tumorigenic properties of glioblastomas and that splice pattern may be of important diagnostic value for glioblastoma.