Design, Synthesis and Biological Activity of C3 Hemisynthetic Triterpenic Esters as Novel Antitrypanosomal Hits.
Ontology highlight
ABSTRACT: Research for innovative drugs is crucial to contribute to parasitic infections control and eradication. Inspired by natural antiprotozoal triterpenes, a library of 12 hemisynthetic 3-O-arylalkyl esters was derived from ursolic and oleanolic acids through one-step synthesis. Compounds were tested on Trypanosoma, Leishmania and the WI38 cell line alongside with a set of triterpenic acids. Results showed that the triterpenic C3 esterification keeps the antitrypanosomal activity (IC50 ≈1.6-5.5 μm) while reducing the cytotoxicity compared to parent acids. Unsaturation of the ester alkyl chain leads to an activity loss interestingly kept when a sterically hindered group replaces the double bond or shields the ester group. An ursane/oleanane C3 hydroxylation was the only important feature for antileishmanial activity. Two candidates, dihydrocinnamoyl and 2-fluorophenylpropionyl ursolic acids, were tested on an acute mouse model of African trypanosomiasis with significant parasitemia reduction at day 5 post-infection for the dihydrocinnamoyl derivative. Further evaluation on other alkyl/protective groups should be investigated both in vitro and in vivo.
SUBMITTER: Schioppa L
PROVIDER: S-EPMC8428374 | biostudies-literature |
REPOSITORIES: biostudies-literature
ACCESS DATA