LiCl Photodissociation on Graphene: A Photochemical Approach to Lithium Intercalation.
Ontology highlight
ABSTRACT: The interest in the research of the structural and electronic properties between graphene and lithium has bloomed since it has been proven that the use of graphene as an anode material in lithium-ion batteries ameliorates their performance and stability. Here, we investigate an alternative route to intercalate lithium underneath epitaxially grown graphene on iridium by means of photon irradiation. We grow thin films of LiCl on top of graphene on Ir(111) and irradiate the system with soft X-ray photons, which leads to a cascade of physicochemical reactions. Upon LiCl photodissociation, we find fast chlorine desorption and a complex sequence of lithium intercalation processes. First, it intercalates, forming a disordered structure between graphene and iridium. On increasing the irradiation time, an ordered Li(1 × 1) surface structure forms, which evolves upon extensive photon irradiation. For sufficiently long exposure times, lithium diffusion within the metal substrate is observed. Thermal annealing allows for efficient lithium desorption and full recovery of the pristine G/Ir(111) system. We follow in detail the photochemical processes using a multitechnique approach, which allows us to correlate the structural, chemical, and electronic properties for every step of the intercalation process of lithium underneath graphene.
SUBMITTER: Azpeitia J
PROVIDER: S-EPMC8431332 | biostudies-literature |
REPOSITORIES: biostudies-literature
ACCESS DATA