Project description:The recent "Advanced Neuroimaging for Acute Stroke Treatment" meeting on September 7 and 8, 2007 in Washington DC, brought together stroke neurologists, neuroradiologists, emergency physicians, neuroimaging research scientists, members of the National Institute of Neurological Disorders and Stroke (NINDS), the National Institute of Biomedical Imaging and Bioengineering (NIBIB), industry representatives, and members of the US Food and Drug Administration (FDA) to discuss the role of advanced neuroimaging in acute stroke treatment. The goals of the meeting were to assess state-of-the-art practice in terms of acute stroke imaging research and to propose specific recommendations regarding: (1) the standardization of perfusion and penumbral imaging techniques, (2) the validation of the accuracy and clinical utility of imaging markers of the ischemic penumbra, (3) the validation of imaging biomarkers relevant to clinical outcomes, and (4) the creation of a central repository to achieve these goals. The present article summarizes these recommendations and examines practical steps to achieve them.
Project description:The hereditary anemias are a relatively heterogeneous set of disorders that can show wide clinical and genetic heterogeneity, which often hampers correct clinical diagnosis. The classical diagnostic workflow for these conditions generally used to start with analysis of the family and personal histories, followed by biochemical and morphological evaluations, and ending with genetic testing. However, the diagnostic framework has changed more recently, and genetic testing is now a suitable approach for differential diagnosis of these patients. There are several approaches to this genetic testing, the choice of which depends on phenotyping, genetic heterogeneity, and gene size. For patients who show complete phenotyping, single-gene testing remains recommended. However, genetic analysis now includes next-generation sequencing, which is generally based on custom-designed targeting panels and whole-exome sequencing. The use of next-generation sequencing also allows the identification of new causative genes, and of polygenic conditions and genetic factors that modify disease severity of hereditary anemias. In the research field, whole-genome sequencing is useful for the identification of non-coding causative mutations, which might account for the disruption of transcriptional factor occupancy sites and cis-regulatory elements. Moreover, advances in high-throughput sequencing techniques have now resulted in the identification of genome-wide profiling of the chromatin structures known as the topologically associating domains. These represent a recurrent disease mechanism that exposes genes to inappropriate regulatory elements, causing errors in gene expression. This review focuses on the challenges of diagnosis and research into hereditary anemias, with indications of both the advantages and disadvantages. Finally, we consider the future perspectives for the use of next-generation sequencing technologies in this era of precision medicine.
Project description:The identification of plasma proteins that systematically change with age and, independent of chronological age, predict accelerated decline of health is an expanding area of research. Circulating proteins are ideal translational "omics" since they are final effectors of physiological pathways and because physicians are accustomed to use information of plasma proteins as biomarkers for diagnosis, prognosis, and tracking the effectiveness of treatments. Recent technological advancements, including mass spectrometry (MS)-based proteomics, multiplexed proteomic assay using modified aptamers (SOMAscan), and Proximity Extension Assay (PEA, O-Link), have allowed for the assessment of thousands of proteins in plasma or other biological matrices, which are potentially translatable into new clinical biomarkers and provide new clues about the mechanisms by which aging is associated with health deterioration and functional decline. We carried out a detailed literature search for proteomic studies performed in different matrices (plasma, serum, urine, saliva, tissues) and species using multiple platforms. Herein, we identified 232 proteins that were age-associated across studies. Enrichment analysis of the 232 age-associated proteins revealed metabolic pathways previously connected with biological aging both in animal models and in humans, most remarkably insulin-like growth factor (IGF) signaling, mitogen-activated protein kinases (MAPK), hypoxia-inducible factor 1 (HIF1), cytokine signaling, Forkhead Box O (FOXO) metabolic pathways, folate metabolism, advance glycation end products (AGE), and receptor AGE (RAGE) metabolic pathway. Information on these age-relevant proteins, likely expanded and validated in longitudinal studies and examined in mechanistic studies, will be essential for patient stratification and the development of new treatments aimed at improving health expectancy.
Project description:The cultivated strawberry (Fragaria?×?ananassa) is an allo-octoploid species, originating nearly 300 years ago from wild progenitors from the Americas. Since that time the strawberry has become the most widely cultivated fruit crop in the world, universally appealing due to its sensory qualities and health benefits. The recent publication of the first high-quality chromosome-scale octoploid strawberry genome (cv. Camarosa) is enabling rapid advances in genetics, stimulating scientific debate and provoking new research questions. In this forward-looking review we propose avenues of research toward new biological insights and applications to agriculture. Among these are the origins of the genome, characterization of genetic variants, and big data approaches to breeding. Key areas of research in molecular biology will include the control of flowering, fruit development, fruit quality, and plant-pathogen interactions. In order to realize this potential as a global community, investments in genome resources must be continually augmented.
Project description:Alopecia areata (AA) is a recurrent autoimmune type of hair loss that affects about 5.3 million people in the United States alone. Despite being the most prevalent autoimmune disease, the molecular and cellular mechanisms underlying this complex disease are still poorly understood, and rational treatments are lacking. Further efforts are necessary to clearly pinpoint the causes and molecular pathways leading to this disease and to find evidence-based treatments for AA. The authors focus on the central role of genetics for gaining insight into disease pathogenesis and setting the stage for the rational development of novel effective therapeutic approaches.
Project description:Tick-borne flaviviruses (TBFs) affect human health globally. Human vaccines provide protection against some TBFs, and antivirals are available, yet TBF-specific control strategies are limited. Advances in genomics offer hope to understand the viral complement transmitted by ticks, and to develop disruptive, data-driven technologies for virus detection, treatment, and control. The genome assemblies of Ixodes scapularis, the North American tick vector of the TBF, Powassan virus, and other tick vectors, are providing insights into tick biology and pathogen transmission and serve as nucleation points for expanded genomic research. Systems biology has yielded insights to the response of tick cells to viral infection at the transcript and protein level, and new protein targets for vaccines to limit virus transmission. Reverse vaccinology approaches have moved candidate tick antigenic epitopes into vaccine development pipelines. Traditional drug and in silico screening have identified candidate antivirals, and target-based approaches have been developed to identify novel acaricides. Yet, additional genomic resources are required to expand TBF research. Priorities include genome assemblies for tick vectors, "omic" studies involving high consequence pathogens and vectors, and emphasizing viral metagenomics, tick-virus metabolomics, and structural genomics of TBF and tick proteins. Also required are resources for forward genetics, including the development of tick strains with quantifiable traits, genetic markers and linkage maps. Here we review the current state of genomic research on ticks and tick-borne viruses with an emphasis on TBFs. We outline an ambitious 10-year roadmap for research in the "omics era," and explore key milestones needed to accomplish the goal of delivering three new vaccines, antivirals and acaricides for TBF control by 2030.
Project description:Rare anemias (RA) are mostly hereditary disorders with low prevalence and a broad spectrum of clinical severity, affecting different stages of erythropoiesis or red blood cell components. RA often remains underdiagnosed or misdiagnosed, and treatment options have been limited to supportive care for many years. During the last decades, the elucidation of the molecular mechanisms underlying several RA paved the way for developing new treatments. Innovative treatments other than supportive care and allogeneic bone marrow transplantation are currently in clinical trials for β-thalassemias, sickle cell disease (SCD), and congenital hemolytic anemias. Recently, luspatercept, an activin receptor ligand trap targeting ineffective erythropoiesis, has been approved as the first pharmacological treatment for transfusion-dependent β-thalassemia. L-glutamine, voxelotor, and crizanlizumab are new drugs approved SCD, targeting different steps of the complex pathophysiological mechanism. Gene therapy represents an innovative and encouraging strategy currently under evaluation in several RA and recently approved for β-thalassemia. Moreover, the advent of gene-editing technologies represents an additional option, mainly focused on correcting the defective gene or editing the expression of genes that regulate fetal hemoglobin synthesis. In this review, we aim to update the status of innovative treatments and the ongoing trials and discuss RA treatments' future directions. Interestingly, several molecules that showed promising results for treating one of these disorders are now under evaluation in the others. In the near future, the management of RA will probably consist of polypharmacotherapy tailored to patients' characteristics.
Project description:To eliminate tuberculosis globally, a new, effective, and affordable vaccine is urgently needed, particularly for use in adults and adolescents in low-income and middle-income countries. We have created a roadmap that lists the actions needed to accelerate tuberculosis vaccine research and development using a participatory process. The vaccine pipeline needs more diverse immunological approaches, antigens, and platforms. Clinical development can be accelerated by validated preclinical models, agreed laboratory correlates of protection, efficient trial designs, and validated endpoints. Determining the public health impact of new tuberculosis vaccines requires understanding of a country's demand for a new tuberculosis vaccine, how to integrate vaccine implementation with ongoing tuberculosis prevention efforts, cost, and national and global demand to stimulate vaccine production. Investments in tuberculosis vaccine research and development need to be increased, with more diversity of funding sources and coordination between these funders. Open science is important to enhance the efficiency of tuberculosis vaccine research and development including early and freely available publication of study findings and effective mechanisms for sharing datasets and specimens. There is a need for increased engagement of industry vaccine developers, for increased political commitment for new tuberculosis vaccines, and to address stigma and vaccine hesitancy. The unprecedented speed by which COVID-19 vaccines have been developed and introduced provides important insight for tuberculosis vaccine research and development.