Project description:Intervention into amyloid deposition with anti-amyloid agents like the polyphenol epigallocatechin-3-gallate (EGCG) is emerging as an experimental secondary treatment strategy in systemic light chain amyloidosis (AL). In both AL and multiple myeloma (MM), soluble immunoglobulin light chains (LC) are produced by clonal plasma cells, but only in AL do they form amyloid deposits in vivo We investigated the amyloid formation of patient-derived LC and their susceptibility to EGCG in vitro to probe commonalities and systematic differences in their assembly mechanisms. We isolated nine LC from the urine of AL and MM patients. We quantified their thermodynamic stabilities and monitored their aggregation under physiological conditions by thioflavin T fluorescence, light scattering, SDS stability, and atomic force microscopy. LC from all patients formed amyloid-like aggregates, albeit with individually different kinetics. LC existed as dimers, ∼50% of which were linked by disulfide bridges. Our results suggest that cleavage into LC monomers is required for efficient amyloid formation. The kinetics of AL LC displayed a transition point in concentration dependence, which MM LC lacked. The lack of concentration dependence of MM LC aggregation kinetics suggests that conformational change of the light chain is rate-limiting for these proteins. Aggregation kinetics displayed two distinct phases, which corresponded to the formation of oligomers and amyloid fibrils, respectively. EGCG specifically inhibited the second aggregation phase and induced the formation of SDS-stable, non-amyloid LC aggregates. Our data suggest that EGCG intervention does not depend on the individual LC sequence and is similar to the mechanism observed for amyloid-β and α-synuclein.
Project description:The immunoglobulin light-chain amyloidosis is a multisystemic disease which manifests by damage to the vital organs by light chain-derived amyloid fibril. Traditionally, the treatment has been directed to the underlying plasma cell clone with or without high dose chemotherapy followed by autologous stem cell transplantation using melphalan based conditioning. Now with the approval of highly tolerable anti-CD38 monoclonal antibody daratumumab based anti-plasma cell therapy in 2021, high rates of hematologic complete responses are possible even in patients who are otherwise deemed not a candidate for autologous stem cell transplantation. However, despite the progress, there remains a limitation in the strategies to improve symptoms particularly in patients with advanced cardiac involvement, those with nephrotic syndrome and autonomic dysfunction due to underlying systemic AL amyloidosis. The symptoms can be an ordeal for the patients and their caregivers and effective strategies are urgently needed to address them. The supportive care is aimed to counteract the symptoms of the disease and the effects of the treatment on involved organs' function and preserve patients' quality of life. Here we discuss multidisciplinary approach in a system-based fashion to address the symptom management in this dreadful disease. In addition to achieving excellent anti-plasma cell disease control, using treatment directed to remove amyloid from the vital organs can theoretically hasten recovery of the involved organs thereby improving symptoms at a faster pace. Ongoing phase III clinical trials of CAEL-101 and Birtamimab will address this question.
Project description:Amyloid formation and deposition of immunoglobulin light-chain proteins in systemic amyloidosis (AL) cause major organ failures. While the ? light-chain is dominant (?/?=1:2) in healthy individuals, ? is highly overrepresented (?/?=3:1) in AL patients. The structural basis of the amyloid formation and the sequence preference are unknown. We examined the correlation between sequence and structural stability of dimeric variable domains of immunoglobulin light chains using molecular dynamics simulations of 24 representative dimer interfaces, followed by energy evaluation of conformational ensembles for 20 AL patients' light chain sequences. We identified a stable interface with displaced N-terminal residues, provides the structural basis for AL protein fibrils formation. Proline isomerization may cause the N-terminus to adopt amyloid-prone conformations. We found that ? light-chains prefer misfolded dimer conformation, while ? chain structures are stabilized by a natively folded dimer. Our study may facilitate structure-based small molecule and antibody design to inhibit AL. This article is part of a Special Issue entitled: Accelerating Precision Medicine through Genetic and Genomic Big Data Analysis edited by Yudong Cai & Tao Huang.
Project description:Dysphagia is an uncommon presentation of systemic immunoglobulin light-chain (AL) amyloidosis with multiple myeloma (MM). Gastrointestinal (GI) involvement usually manifests with altered motility, malabsorption or bleeding. Furthermore, patients identified with GI amyloidosis, without previous diagnosis of a plasma cell disorder, are extremely rare. We report an elderly woman who presented with acute on chronic cardiac dysfunction, sick sinus syndrome and acute renal failure. While admitted, she developed intermittent dysphagia to both solids and liquids. Oesophagogastroduodenoscopy showed ulcerations of oesophagus and duodenum. Biopsies revealed focal amyloid deposition, stained with Congo red. Renal biopsy revealed amyloid deposition in renal arterioles. She underwent a bone marrow biopsy confirming MM, represented by more than 15% plasma cell population. She was started on treatment for heart failure, induction chemotherapy for MM and percutaneous gastrostomy tube for feeding. However, she continued to deteriorate, eventually opting for hospice, and ultimately died 2?days after discharge from hospital.
Project description:Light chain (AL) amyloidosis is caused by a usually small plasma-cell clone that is able to produce the amyloidogenic light chains. They are able to misfold and aggregate, deposit in tissues in the form of amyloid fibrils and lead to irreversible organ dysfunction and eventually death if treatment is late or ineffective. Cardiac damage is the most important prognostic determinant. The risk of dialysis is predicted by the severity of renal involvement, defined by the baseline proteinuria and glomerular filtration rate, and by the response to therapy. The specific treatment is chemotherapy targeting the underlying plasma-cell clone. It needs to be risk-adapted, according to the severity of cardiac and/or multi-organ involvement. Autologous stem cell transplant (preceded by induction and/or followed by consolidation with bortezomib-based regimens) can be considered for low-risk patients (~20%). Bortezomib combined with alkylators is used in the majority of intermediate-risk patients, and with possible dose escalation in high-risk subjects. Novel, powerful anti-plasma cell agents were investigated in the relapsed/refractory setting, and are being moved to upfront therapy in clinical trials. In addition, the use of novel approaches based on antibodies targeting the amyloid deposits or small molecules interfering with the amyloidogenic process gave promising results in preliminary studies. Some of them are under evaluation in controlled trials. These molecules will probably add powerful complements to standard chemotherapy. The understanding of the specific molecular mechanisms of cardiac damage and the characteristics of the amyloidogenic clone are unveiling novel potential treatment approaches, moving towards a cure for this dreadful disease.
Project description:Systemic immunoglobulin light chain (AL) amyloidosis is a disorder characterized by the production of clonal serum free light chains that misfold, aggregate, and deposit in vital organs. Treatment of this disease is typically targeted at the abnormal plasma cell clone in the bone marrow which is the source of the amyloidogenic light chain. First-line therapies in this disease are well established, but in the relapsed or refractory setting, there are many treatment options, including immunomodulatory agents, proteasome inhibitors, alkylating agents, and monoclonal antibodies. Decisions regarding treatment choice should be made by a multidisciplinary team with consideration of the patient's functional status, disease stage, degree of organ dysfunction, and potential treatment toxicities. Herein we review the current treatment options available for patients with relapsed or refractory AL amyloidosis.
Project description:In patients with immunoglobulin light-chain (AL) amyloidosis, depth of hematologic response correlates with both organ response and overall survival. Our group has demonstrated that screening with a matrix-assisted laser desorption/ionization-time-of-flight (TOF) mass spectrometry (MS) is a quick, sensitive, and accurate means to diagnose and monitor the serum of patients with plasma cell disorders. Microflow liquid chromatography coupled with electrospray ionization and quadrupole TOF MS adds further sensitivity. We identified 33 patients with AL amyloidosis who achieved amyloid complete hematologic response, who also had negative bone marrow by six-color flow cytometry, and who had paired serum samples to test by MS. These samples were subjected to blood MS. Four patients (12%) were found to have residual disease by these techniques. The presence of residual disease by MS was associated with a poorer time to progression (at 50 months 75% versus 13%, p?=?0.003). MS of the blood out-performed serum and urine immunofixation, the serum immunoglobulin free light chain, and six-color flow cytometry of the bone marrow in detecting residual disease. Additional studies that include urine MS and next-generation techniques to detect clonal plasma cells in the bone marrow will further elucidate the full potential of this technique.
Project description:PurposeMinimal residual disease (MRD) is a validated prognostic factor in several hematological malignancies. However, its role in systemic light chain (AL) amyloidosis remains controversial, and this systematic review and meta-analysis aims to fill this gap.MethodsWe searched for relevant studies on Pubmed, Embase, and Cochrane Controlled Register of Trials, nine studies involving 451 patients were included and meta-analyzed. This systematic review has been registered in PROSPERO (CRD42023494169).ResultsOur study found that in the group of patients who achieved very good partial response (VGPR) or better, MRD negativity was correlated with higher cardiac and renal response rates [pooled risk ratio (RR) = 0.74 (95% CI 0.62-0.89), 0.74 (95% CI 0.64-0.87), respectively]. Patients with MRD positivity had a higher hematologic progression rate within two years after MRD detection [pooled RR = 10.31 (95% CI 2.02-52.68)]; and a higher risk of hematologic + organ progression in the first year [pooled RR = 12.57 (95% CI 1.73-91.04)]. Moreover, MRD negativity was correlated with a better progression-free survival (PFS) [pooled hazard ratio (HR) = 0.27 (95% CI 0.17-0.45)]; but it did not significantly improve the overall survival (OS) [pooled HR = 0.34 (95% CI 0.11-1.07)].ConclusionIn AL amyloidosis, our study supports that MRD negativity correlates with higher cardiac or renal response rates and indicates a better PFS in the follow-up. However, the correlation between OS and the status of MRD is not significant.