ABSTRACT: Most deaths from cancer are explained by metastasis, and yet large-scale metastasis research has been impractical owing to the complexity of in vivo models. Here we introduce an in vivo barcoding strategy that is capable of determining the metastatic potential of human cancer cell lines in mouse xenografts at scale. We validated the robustness, scalability and reproducibility of the method and applied it to 500 cell lines1,2 spanning 21 types of solid tumour. We created a first-generation metastasis map (MetMap) that reveals organ-specific patterns of metastasis, enabling these patterns to be associated with clinical and genomic features. We demonstrate the utility of MetMap by investigating the molecular basis of breast cancers capable of metastasizing to the brain-a principal cause of death in patients with this type of cancer. Breast cancers capable of metastasizing to the brain showed evidence of altered lipid metabolism. Perturbation of lipid metabolism in these cells curbed brain metastasis development, suggesting a therapeutic strategy to combat the disease and demonstrating the utility of MetMap as a resource to support metastasis research.
Project description:Improved efforts are necessary to define the functional product of cancer mutations currently being revealed through large-scale sequencing efforts. Using genome-scale pooled shRNA screening technology, we mapped negative genetic interactions across a set of isogenic cancer cell lines and confirmed hundreds of these interactions in orthogonal co-culture competition assays to generate a high-confidence genetic interaction network of differentially essential or differential essentiality (DiE) genes. The network uncovered examples of conserved genetic interactions, densely connected functional modules derived from comparative genomics with model systems data, functions for uncharacterized genes in the human genome and targetable vulnerabilities. Finally, we demonstrate a general applicability of DiE gene signatures in determining genetic dependencies of other non-isogenic cancer cell lines. For example, the PTEN(-/-) DiE genes reveal a signature that can preferentially classify PTEN-dependent genotypes across a series of non-isogenic cell lines derived from the breast, pancreas and ovarian cancers. Our reference network suggests that many cancer vulnerabilities remain to be discovered through systematic derivation of a network of differentially essential genes in an isogenic cancer cell model.
Project description:The organotropism is the propensity of metastatic cancer cells to colonize preferably certain distant organs, resulting in a non-random distribution of metastases. In order to shed light on this behaviour, several studies were performed by the injection of human cancer cell lines into immunocompromised mouse models. However, the information about these experiments is spread in the literature. For each xenograft experiment reported in the literature, we annotated both the experimental conditions and outcomes, including details on inoculated human cell lines, mouse models, injection methods, sites of metastasis, organs not colonized, rate of metastasis, latency time, overall survival and the involved genes. We created MetaTropismDB, a freely available database collecting hand-curated data useful to highlight the mechanisms of organ-specific metastasis. Currently, it stores the results of 513 experiments in which injections of 219 human cell lines have been carried out in mouse models. Notably, 296 genes involved in organotropic metastases have been collected. This specialized database allows the researchers to compare the current results about organotropism and plan future experiments in order to identify which tumour molecular signatures establish if and where the metastasis will develop. Database URL: http://www.introni.it/Metastasis/metastasis.html.
Project description:This SuperSeries is composed of the following subset Series: GSE31603: Human breast cancer cell lines: vehicle vs. BMP4 incubation GSE31604: Human breast cancer cell lines: vehicle vs. BMP7 incubation Refer to individual Series
Project description:This pan-cancer cell line proteomic atlas comprises proteomic data acquired by data independent acquisition (specifically, SWATH) mass spectrometry for 949 cancer cell lines. Cell lines were processed in technical triplicate, with duplicates acquired on different mass spectrometers, alongside HEK293T cell line control samples processed across the experimental period. For further details, refer to the publication that accompanies this data deposition.
Project description:Spread of cancer to the brain remains an unmet clinical need in spite of the increasing number of cases among patients with lung, breast cancer, and melanoma most notably. Although research on brain metastasis was considered a minor aspect in the past due to its untreatable nature and invariable lethality, nowadays, limited but encouraging examples have questioned this statement, making it more attractive for basic and clinical researchers. Evidences of its own biological identity (i.e., specific microenvironment) and particular therapeutic requirements (i.e., presence of blood-brain barrier, blood-tumor barrier, molecular differences with the primary tumor) are thought to be critical aspects that must be functionally exploited using preclinical models. We present the coordinated effort of 19 laboratories to compile comprehensive information related to brain metastasis experimental models. Each laboratory has provided details on the cancer cell lines they have generated or characterized as being capable of forming metastatic colonies in the brain, as well as principle methodologies of brain metastasis research. The Brain Metastasis Cell Lines Panel (BrMPanel) represents the first of its class and includes information about the cell line, how tropism to the brain was established, and the behavior of each model in vivo. These and other aspects described are intended to assist investigators in choosing the most suitable cell line for research on brain metastasis. The main goal of this effort is to facilitate research on this unmet clinical need, to improve models through a collaborative environment, and to promote the exchange of information on these valuable resources.
Project description:Altered glycosylation is a universal feature of cancer cells and altered glycans can help cancer cells escape immune surveillance, facilitate tumor invasion, and increase malignancy. The goal of this study was to identify specific glycoenzymes, which could distinguish prostate cancer cells from normal prostatic cells. We investigated enzymatic activities and gene expression levels of key glycosyl- and sulfotransferases responsible for the assembly of O- and N-glycans in several prostatic cells. These cells included immortalized RWPE-1 cells derived from normal prostatic tissues, and prostate cancer cells derived from metastasis in bone (PC-3), brain (DU145), lymph node (LNCaP), and vertebra (VCaP). We found that all cells were capable of synthesizing complex N-glycans and O-glycans with the core 1 structure, and each cell line had characteristic biosynthetic pathways to modify these structures. The in vitro measured activities corresponded well to the mRNA levels of glycosyltransferases and sulfotransferases. Lectin and antibody binding to whole cells supported these results, which form the basis for the development of tumor cell-specific targeting strategies.
Project description:LARP1 is an oncogenic RNA-binding protein required for ribosome biogenesis and cancer cell survival. From published in vitro studies, there is disparity over which of two different LARP1 protein isoforms (termed the long LI-LARP1 and short SI-LARP1) is the canonical. Here, after conducting a series of biochemical and cellular assays, we conclude that LI-LARP1 (NM_033551.3 > NP_056130.2) is the dominantly expressed form. We observe that SI-LARP1 (NM_015315.5> NP_056130.2) is epigenetically repressed and that this repression is evolutionarily conserved in all but a small subclade of mammalian species. As with other LARP family members, there are multiple potential LARP1 mRNA isoforms that appear to be censored within the nucleus. The capacity of the cell to modulate splicing and expression of these apparently 'redundant' mRNAs hints at contextually specific mechanisms of LARP1 expression.
Project description:Prohibitin (PHB) is a highly conserved, ubiquitously expressed, multifunctional protein with a well-characterized function as a chaperone-stabilizing mitochondrial proteins. Recently it was reported that nuclear PHB participates in HIRA chaperone complexes and regulates downstream gene expression via cell cycle independent deposition of H3.3 into DNA. However, the role of PHB in cancer progression remains controversial with conflicting reports in the literature, perhaps due to its cell type-dependent subcellular localization. Here, we report that the increased expression of nuclear PHB is positively correlated with metastasis of breast cancer cell lines. We showed PHB participates in the HIRA complex by interacting with HIRA through the linker region of the PHB domain and stabilizes all components of the HIRA complex in breast cancer. Overexpression of nuclear PHB resulted in a higher enrichment of histone H3.3 deposited by the HIRA complex at the promoters of mesenchymal markers. This coincided with an increased gene expression level of these markers, and induced EMT in breast cancer. Overall, these molecular and structural mechanisms suggest that nuclear PHB could hold promise as a potential target for cancer therapy.
Project description:BackgroundOral cancer belongs to the class of head and neck cancers and can be life threatening if not diagnosed and treated early. Activation of cell death via apoptosis or reactive oxygen species (ROS) accumulation and inhibition of cell cycle progression, migration, and epithelial-to-mesenchymal transition (EMT) may be a good strategy to arrest the development of oral cancer. In this study, we analyzed the possible action of chrysophanol isolated from the rhizomes of Rheum palmatum on the oral cancer cell lines FaDu (human pharynx squamous cell carcinoma) and SAS (human tongue squamous carcinoma) by investigating whether chrysophanol could influence cell death.MethodCell viability was measured by using the MTT assay. For the detection of apoptosis, terminal deoxynucleotidyl transferase dUTP nick-end labeling (TUNEL) staining and subG1 population analysis were used. We also examined cell cycle progression and ROS levels by flow cytometry. Additionally, the expression of p53, p21, procaspase 3, cyclin D1, CDK4, cdc2, CDK2, E-cadherin, vimentin, and PCNA was evaluated by western blotting.ConclusionChrysophanol has an anticancer effect on FaDu and SAS cell lines. There is an increase in subG1 accumulation, ROS production, and cell cycle G1 arrest after treatment with chrysophanol. On the other hand, chrysophanol inhibited cell migration/metastasis and EMT. We proposed that chrysophanol may be a good candidate compound on oral cancer treatment in the further.
Project description:Thyroid cancer incidence has been increasing over time, and it is estimated that ?1950 advanced thyroid cancer patients will die of their disease in 2015. To combat this disease, an enhanced understanding of thyroid cancer development and progression as well as the development of efficacious, targeted therapies are needed. In vitro and in vivo studies utilizing thyroid cancer cell lines and animal models are critically important to these research efforts. In this report, we detail our studies with a panel of authenticated human anaplastic and papillary thyroid cancer (ATC and PTC) cell lines engineered to express firefly luciferase in two in vivo murine cancer models-an orthotopic thyroid cancer model as well as an intracardiac injection metastasis model. In these models, primary tumor growth in the orthotopic model and the establishment and growth of metastases in the intracardiac injection model are followed in vivo using an IVIS imaging system. In the orthotopic model, the ATC cell lines 8505C and T238 and the PTC cell lines K1/GLAG-66 and BCPAP had take rates >90 % with final tumor volumes ranging 84-214 mm(3) over 4-5 weeks. In the intracardiac model, metastasis establishment was successful in the ATC cell lines HTh74, HTh7, 8505C, THJ-16T, and Cal62 with take rates ?70 %. Only one of the PTC cell lines tested (BCPAP) was successful in the intracardiac model with a take rate of 30 %. These data will be beneficial to inform the choice of cell line and model system for the design of future thyroid cancer studies.