Unknown

Dataset Information

0

Mechanism and function of DNA replication-independent DNA-protein crosslink repair via the SUMO-RNF4 pathway.


ABSTRACT: DNA-protein crosslinks (DPCs) obstruct essential DNA transactions, posing a serious threat to genome stability and functionality. DPCs are proteolytically processed in a ubiquitin- and DNA replication-dependent manner by SPRTN and the proteasome but can also be resolved via targeted SUMOylation. However, the mechanistic basis of SUMO-mediated DPC resolution and its interplay with replication-coupled DPC repair remain unclear. Here, we show that the SUMO-targeted ubiquitin ligase RNF4 defines a major pathway for ubiquitylation and proteasomal clearance of SUMOylated DPCs in the absence of DNA replication. Importantly, SUMO modifications of DPCs neither stimulate nor inhibit their rapid DNA replication-coupled proteolysis. Instead, DPC SUMOylation provides a critical salvage mechanism to remove DPCs formed after DNA replication, as DPCs on duplex DNA do not activate interphase DNA damage checkpoints. Consequently, in the absence of the SUMO-RNF4 pathway cells are able to enter mitosis with a high load of unresolved DPCs, leading to defective chromosome segregation and cell death. Collectively, these findings provide mechanistic insights into SUMO-driven pathways underlying replication-independent DPC resolution and highlight their critical importance in maintaining chromosome stability and cellular fitness.

SUBMITTER: Liu JCY 

PROVIDER: S-EPMC8441304 | biostudies-literature |

REPOSITORIES: biostudies-literature

Similar Datasets

2021-08-06 | PXD021947 | Pride
| S-EPMC2748255 | biostudies-literature
| S-EPMC3890373 | biostudies-literature
| S-EPMC3415447 | biostudies-literature
| S-EPMC4229047 | biostudies-literature
| S-EPMC5128727 | biostudies-literature
| S-EPMC6086610 | biostudies-literature
| S-EPMC4529964 | biostudies-literature
| S-EPMC3666337 | biostudies-literature
| S-EPMC5128726 | biostudies-other