Project description:The defect tolerance of halide perovskite materials has led to efficient optoelectronic devices based on thin-film geometries with unprecedented speed. Moreover, it has motivated research on perovskite nanowires because surface recombination continues to be a major obstacle in realizing efficient nanowire devices. Recently, ordered vertical arrays of perovskite nanowires have been realized, which can benefit from nanophotonic design strategies allowing precise control over light propagation, absorption, and emission. An anodized aluminum oxide template is used to confine the crystallization process, either in the solution or in the vapor phase. This approach, however, results in an unavoidable drawback: only nanowires embedded inside the AAO are obtainable, since the AAO cannot be etched selectively. The requirement for a support matrix originates from the intrinsic difficulty of controlling precise placement, sizes, and shapes of free-standing nanostructures during crystallization, especially in solution. Here we introduce a method to fabricate free-standing solution-based vertical nanowires with arbitrary dimensions. Our scheme also utilizes AAO; however, in contrast to embedding the perovskite inside the matrix, we apply a pressure gradient to extrude the solution from the free-standing templates. The exit profile of the template is subsequently translated into the final semiconductor geometry. The free-standing nanowires are single crystalline and show a PLQY up to ∼29%. In principle, this rapid method is not limited to nanowires but can be extended to uniform and ordered high PLQY single crystalline perovskite nanostructures of different shapes and sizes by fabricating additional masking layers or using specifically shaped nanopore endings.
Project description:Herein, a 3D composite electrode supported by g-C3N4 nanowire framework as scaffold and poly(3,4-ethylenedioxythiophene): poly(4-styrenesulfonate) (PEDOT: PSS) as conducting polymer is reported for flexible solid-state electrochemical capacitors. Compared to pure PEDOT: PSS, the composite electrodes have a greatly increased specific surface and showed good electrochemical performance. A specific capacitance of 202 F g-1 is achieved, and 83.5% of initial capacitance maintained after 5000 cycles. The device based on the 3D g-C3N4/PEDOT: PSS electrode also exhibits good performance in capacitance, flexibility, and cycling stability.
Project description:We derive the operating characteristics of three-dimensional array-based testing algorithms for case identification in the presence of testing error. The operating characteristics investigated include efficiency (i.e., expected number of tests per specimen) and error rates (e.g., sensitivity, specificity, positive, and negative predictive values). The methods are illustrated by comparing the proposed algorithms with previously studied hierarchical and two-dimensional array algorithms for detecting recent HIV infections in North Carolina. Our results indicate that three-dimensional array-based algorithms can be more efficient and accurate than previously proposed algorithms in settings with test error and low prevalence.
Project description:We report on the unconventional optical properties exhibited by a two-dimensional array of thin Si nanowires arranged in a random fractal geometry and fabricated using an inexpensive, fast and maskless process compatible with Si technology. The structure allows for a high light-trapping efficiency across the entire visible range, attaining total reflectance values as low as 0.1% when the wavelength in the medium matches the length scale of maximum heterogeneity in the system. We show that the random fractal structure of our nanowire array is responsible for a strong in-plane multiple scattering, which is related to the material refractive index fluctuations and leads to a greatly enhanced Raman scattering and a bright photoluminescence. These strong emissions are correlated on all length scales according to the refractive index fluctuations. The relevance and the perspectives of the reported results are discussed as promising for Si-based photovoltaic and photonic applications.
Project description:Bacteriorhodopsin (bR) is a light-driven proton pump. The primary photochemical event upon light absorption is isomerization of the retinal chromophore. Here we used time-resolved crystallography at an X-ray free-electron laser to follow the structural changes in multiphoton-excited bR from 250 femtoseconds to 10 picoseconds. Quantum chemistry and ultrafast spectroscopy were used to identify a sequential two-photon absorption process, leading to excitation of a tryptophan residue flanking the retinal chromophore, as a first manifestation of multiphoton effects. We resolve distinct stages in the structural dynamics of the all-trans retinal in photoexcited bR to a highly twisted 13-cis conformation. Other active site sub-picosecond rearrangements include correlated vibrational motions of the electronically excited retinal chromophore, the surrounding amino acids and water molecules as well as their hydrogen bonding network. These results show that this extended photo-active network forms an electronically and vibrationally coupled system in bR, and most likely in all retinal proteins.
Project description:Three-dimensional (3D), multi-transistor-layer, integrated circuits represent an important technological pursuit promising advantages in integration density, operation speed, and power consumption compared with 2D circuits. We report fully functional, 3D integrated complementary metal-oxide-semiconductor (CMOS) circuits based on separate interconnected layers of high-mobility n-type indium arsenide (n-InAs) and p-type germanium/silicon core/shell (p-Ge/Si) nanowire (NW) field-effect transistors (FETs). The DC voltage output (V(out)) versus input (V(in)) response of vertically interconnected CMOS inverters showed sharp switching at close to the ideal value of one-half the supply voltage and, moreover, exhibited substantial DC gain of approximately 45. The gain and the rail-to-rail output switching are consistent with the large noise margin and minimal static power consumption of CMOS. Vertically interconnected, three-stage CMOS ring oscillators were also fabricated by using layer-1 InAs NW n-FETs and layer-2 Ge/Si NW p-FETs. Significantly, measurements of these circuits demonstrated stable, self-sustained oscillations with a maximum frequency of 108 MHz, which represents the highest-frequency integrated circuit based on chemically synthesized nanoscale materials. These results highlight the flexibility of bottom-up assembly of distinct nanoscale materials and suggest substantial promise for 3D integrated circuits.
Project description:In band-like semiconductors, charge carriers form a thermal energy distribution rapidly after optical excitation. In hybrid perovskites, the cooling of such thermal carrier distributions occurs on timescales of about 300?fs via carrier-phonon scattering. However, the initial build-up of the thermal distribution proved difficult to resolve with pump-probe techniques due to the requirement of high resolution, both in time and pump energy. Here, we use two-dimensional electronic spectroscopy with sub-10?fs resolution to directly observe the carrier interactions that lead to a thermal carrier distribution. We find that thermalization occurs dominantly via carrier-carrier scattering under the investigated fluences and report the dependence of carrier scattering rates on excess energy and carrier density. We extract characteristic carrier thermalization times from below 10 to 85?fs. These values allow for mobilities of 500?cm2?V-1?s-1 at carrier densities lower than 2?×?1019?cm-3 and limit the time for carrier extraction in hot carrier solar cells.Carrier-carrier scattering rates determine the fundamental limits of carrier transport and electronic coherence. Using two-dimensional electronic spectroscopy with sub-10?fs resolution, Richter and Branchi et al. extract carrier thermalization times of 10 to 85?fs in hybrid perovskites.
Project description:Topological insulators are candidates to open up a novel route in spin based electronics. Different to traditional ferromagnetic materials, where the carrier spin-polarization and magnetization are based on the exchange interaction, the spin properties in topological insulators are based on the coupling of spin- and orbit interaction connected to its momentum. Specific ways to control the spin-polarization with light have been demonstrated: the energy momentum landscape of the Dirac cone provides spin-momentum locking of the charge current and its spin. We investigate a spin-related signal present only during the laser excitation studying real and imaginary part of the complex Kerr angle by disentangling spin and lattice contributions. This coherent signal is only present at the time of the pump-pulses' light field and can be described in terms of a Raman coherence time. The Raman transition involves states at the bottom edge of the conduction band. We demonstrate a coherent femtosecond control of spin-polarization for electronic states at around the Dirac cone.
Project description:A templated electrochemical technique for patterning macroscopic arrays of single-crystalline Si micro- and nanowires with feature dimensions down to 5 nm is reported. This technique, termed three-dimensional electrochemical axial lithography (3DEAL), allows the design and parallel fabrication of hybrid silicon nanowire arrays decorated with complex metal nano-ring architectures in a flexible and modular approach. While conventional templated approaches are based on the direct replication of a template, our method can be used to perform high-resolution lithography on pre-existing nanostructures. This is made possible by the synthesis of a porous template with tunable dimensions that guides the deposition of well-defined metallic shells around the Si wires. The synthesis of a variety of ring architectures composed of different metals (Au, Ag, Fe, and Ni) with controlled sequence, height, and position along the wire is demonstrated for both straight and kinked wires. We observe a strong enhancement of the Raman signal for arrays of Si nanowires decorated with multiple gold rings due to the plasmonic hot spots created in these tailored architectures. The uniformity of the fabrication method is evidenced by a homogeneous increase in the Raman signal throughout the macroscopic sample. This demonstrates the reliability of the method for engineering plasmonic fields in three dimensions within Si wire arrays.
Project description:Tissue engineering is an essential component of developing effective regenerative therapies. In this study, we introduce a promising method to create scaffold-free three-dimensional (3D) tissue engineered multilayered microstructures from cultured cells using the "3D tissue fabrication system" (Regenova®; Cyfuse, Tokyo, Japan). This technique utilizes the adhesive nature of cells. When cells are cultured in nonadhesive wells, they tend to aggregate and form a spheroidal structure. The advantage of this approach is that cellular components can be mixed into one spheroid, thereby promoting the formation of extracellular matrices, such as collagen and elastin. This system enables one to create a predesigned 3D structure composed of cultured cells. We found that the advantages of this system to be (1) the length, size, and shape of the structure that were designable and highly reproducible because of the computer controlled robotics system, (2) the graftable structure could be created within a reasonable period (8 days), and (3) the constructed tissue did not contain any foreign material, which may avoid the potential issues of contamination, biotoxicity, and allergy. The utilization of this robotic system enabled the creation of a 3D multilayered microstructure made of cell-based spheres with a satisfactory mechanical properties and abundant extracellular matrix during a short period of time. These results suggest that this new technology will represent a promising, attractive, and practical strategy in the field of tissue engineering. Impact statement The utilization of the "three dimensional tissue fabrication system" enabled the creation of a three-dimensional (3D) multilayered microstructure made of cell-based spheres with a satisfactory mechanical properties and abundant extracellular matrix during a short period of time. These results suggest that this new technology will represent a promising, attractive, and practical strategy in the field of tissue engineering.