Project description:Healthy aging is typified by a progressive and absolute loss of podocytes over the lifespan of animals and humans. To test the hypothesis that a subset of glomerular parietal epithelial cell (PEC) progenitors transition to a podocyte fate with aging, dual reporter PEC-rtTA|LC1|tdTomato|Nphs1-FLPo|FRT-EGFP mice were generated. PECs were inducibly labeled with a tdTomato reporter, and podocytes were constitutively labeled with an EGFP reporter. With advancing age (14 and 24 months) glomeruli in the juxta-medullary cortex (JMC) were more severely injured than those in the outer cortex (OC). In aged mice (24m), injured glomeruli with lower podocyte number (41% decrease), showed more PEC migration and differentiation to a podocyte fate than mildly injured or healthy glomeruli. PECs differentiated to a podocyte fate had ultrastructural features of podocytes and co-expressed the podocyte markers podocin, nephrin, p57 and VEGF164, but not markers of mesangial (Perlecan) or endothelial (ERG) cells. PECs differentiated to a podocyte fate did not express CD44, a marker of PEC activation. Taken together, we demonstrate that a subpopulation of PECs differentiate to a podocyte fate predominantly in injured glomeruli in mice of advanced age.
Project description:In the glomerulus, Bowman's space is formed by a continuum of glomerular epithelial cells. In focal segmental glomerulosclerosis (FSGS), glomeruli show segmental scarring, a result of activated parietal epithelial cells (PECs) invading the glomerular tuft. The segmental scars interrupt the epithelial continuum. However, non-sclerotic segments seem to be preserved even in glomeruli with advanced lesions. We studied the histology of the segmental pattern in Munich Wistar Frömter rats, a model for secondary FSGS. Our results showed that matrix layers lined with PECs cover the sclerotic lesions. These PECs formed contacts with podocytes of the uninvolved tuft segments, restoring the epithelial continuum. Formed Bowman's spaces were still connected to the tubular system. In biopsies of patients with secondary FSGS, we also detected matrix layers formed by PECs, separating the uninvolved from the sclerotic glomerular segments. PECs have a major role in the formation of glomerulosclerosis; we show here that in FSGS they also restore the glomerular epithelial cell continuum that surrounds Bowman's space. This process may be beneficial and indispensable for glomerular filtration in the uninvolved segments of sclerotic glomeruli.
Project description:Cell cycle quiescence is a critical feature contributing to haematopoietic stem cell (HSC) maintenance. Although various candidate stromal cells have been identified as potential HSC niches, the spatial localization of quiescent HSCs in the bone marrow remains unclear. Here, using a novel approach that combines whole-mount confocal immunofluorescence imaging techniques and computational modelling to analyse significant three-dimensional associations in the mouse bone marrow among vascular structures, stromal cells and HSCs, we show that quiescent HSCs associate specifically with small arterioles that are preferentially found in endosteal bone marrow. These arterioles are ensheathed exclusively by rare NG2 (also known as CSPG4)(+) pericytes, distinct from sinusoid-associated leptin receptor (LEPR)(+) cells. Pharmacological or genetic activation of the HSC cell cycle alters the distribution of HSCs from NG2(+) periarteriolar niches to LEPR(+) perisinusoidal niches. Conditional depletion of NG2(+) cells induces HSC cycling and reduces functional long-term repopulating HSCs in the bone marrow. These results thus indicate that arteriolar niches are indispensable for maintaining HSC quiescence.
Project description:As adult podocytes cannot adequately proliferate following depletion in disease states, there has been interest in the potential role of progenitors in podocyte repair and regeneration. To determine whether parietal epithelial cells (PECs) can serve as adult podocyte progenitors following disease-induced podocyte depletion, PECs were permanently labeled in adult PEC-rtTA/LC1/R26 reporter mice. In normal mice, labeled PECs were confined to Bowman's capsule, whereas in disease (cytotoxic sheep anti-podocyte antibody) labeled PECs were found in the glomerular tuft in progressively higher numbers by days 7, 14, and 28. Early in disease, the majority of PECs in the tuft coexpressed CD44. By day 28, when podocyte numbers were significantly higher and disease severity was significantly lower, the majority of labeled PECs coexpressed podocyte proteins but not CD44. Neither labeled PECs on the tuft nor podocytes stained for the proliferation marker BrdU. The de novo expression of phospho-ERK colocalized to CD44 expressing PECs, but not to PECs expressing podocyte markers. Thus, in a mouse model of focal segmental glomerulosclerosis typified by abrupt podocyte depletion followed by regeneration, PECs undergo two phenotypic changes once they migrate to the glomerular tuft. Initially these cells are predominantly activated CD44 expressing cells coinciding with glomerulosclerosis, and later they predominantly exhibit a podocyte phenotype, which is likely reparative.
Project description:The goal of this study was to identify transcriptomic changes of mouse kidney cortex in mice with podocyte-specific deletion of Kruppel-like factor 4, a zinc-finger transcription factor.
Project description:Cell cycle inhibitors, such as the cyclin-dependent kinase (Cdk) inhibitor proteins and retinoblastoma (Rb) family members, control exit from the cell cycle during the development of a variety of terminally differentiated tissues. It is unclear whether sustained expression of these proteins is required to prevent cell cycle re-entry in quiescent and terminally differentiated cells. The organ of Corti (cochlear sensory epithelium) and pars intermedia (intermediate lobe of the pituitary) are two tissues that share the characteristic of ongoing cell division in mice lacking either the p27(Kip1) Cdk inhibitor, Ink4 proteins, or Rb. Here, we use tamoxifen-inducible mouse models to delete p27(Kip1) in postnatal animals and show this is sufficient to induce proliferation in both the organ of Corti and pars intermedia. Thus, these tissues remain sensitive to the presence of p27(Kip1) even after their developmental exit from the cell cycle. The neonatal cochlea displayed heightened sensitivity to changes in p27(Kip1) expression, with a proliferative response higher than that of constitutive null mice. In adults, the proliferative response was reduced but was accompanied by increased cell survival. In contrast, re-establishment of normal p27(Kip1) expression in animals with established pituitary tumors, in an inducible "knock-on" model, led to cessation of pituitary tumor growth, indicating the cells had maintained their susceptibility to p27-mediated growth suppression. Although restoration of p27(Kip1) did not induce apoptosis, it did lead to resolution of pathological features and normalization of gene expression. Our data underscore the importance of p27(Kip1) expression in the maintenance of cellular quiescence and terminal differentiation.
Project description:Diabetic glomerular injury is a major complication of diabetes mellitus and is the leading cause of end stage renal disease (ESRD). Healthy podocytes are essential for glomerular function and health. Injury or loss of these cells results in increased proteinuria and kidney dysfunction and is a common finding in various glomerulopathies. Thus, mechanistic understanding of pathways that protect podocytes from damage are essential for development of future therapeutics. MicroRNA-146a (miR-146a) is a negative regulator of inflammation and is highly expressed in myeloid cells and podocytes. We previously reported that miR-146a levels are significantly reduced in the glomeruli of patients with diabetic nephropathy (DN). Here we report generation of mice with selective deletion of miR-146a in podocytes and use of these mice in models of glomerular injury. Induction of glomerular injury in C57BL/6 wildtype mice (WT) and podocyte-specific miR-146a knockout (Pod-miR146a-/-) animals via administration of low-dose lipopolysaccharide (LPS) or nephrotoxic serum (NTS) resulted in increased proteinuria in the knockout mice, suggesting that podocyte-expressed miR-146a protects these cells, and thus glomeruli, from damage. Furthermore, induction of hyperglycemia using streptozotocin (STZ) also resulted in an accelerated development of glomerulopathy and a rapid increase in proteinuria in the knockout animals, as compared to the WT animals, further confirming the protective role of podocyte-expressed miR-146a. We also confirmed that the direct miR-146a target, ErbB4, was significantly upregulated in the diseased glomeruli and erlotinib, an ErbB4 and EGFR inhibitor, reducedits upregulation and the proteinuria in treated animals. Primary miR146-/- podocytes from these animals also showed a basally upregulated TGFβ-Smad3 signaling in vitro. Taken together, this study shows that podocyte-specific miR-146a is imperative for protecting podocytes from glomerular damage, via modulation of ErbB4/EGFR, TGFβ, and linked downstream signaling.
Project description:Parietal epithelial cells have been identified as potential progenitor cells in glomerular regeneration, but the molecular mechanisms underlying this process are not fully defined. Here, we established an immortalized polyclonal human parietal epithelial cell (hPEC) line from naive human Bowman's capsule cells isolated by mechanical microdissection. These hPECs expressed high levels of PEC-specific proteins and microRNA-193a (miR-193a), a suppressor of podocyte differentiation through downregulation of Wilms' tumor 1 in mice. We then investigated the function of miR-193a in the establishment of podocyte and PEC identity and determined whether inhibition of miR-193a influences the behavior of PECs in glomerular disease. After stable knockdown of miR-193a, hPECs adopted a podocyte-like morphology and marker expression, with decreased expression levels of PEC markers. In mice, inhibition of miR-193a by complementary locked nucleic acids resulted in an upregulation of the podocyte proteins synaptopodin and Wilms' tumor 1. Conversely, overexpression of miR-193a in vivo resulted in the upregulation of PEC markers and the loss of podocyte markers in isolated glomeruli. Inhibition of miR-193a in a mouse model of nephrotoxic nephritis resulted in reduced crescent formation and decreased proteinuria. Together, these results show the establishment of a human PEC line and suggest that miR-193a functions as a master switch, such that glomerular epithelial cells with high levels of miR-193a adopt a PEC phenotype and cells with low levels of miR-193a adopt a podocyte phenotype. miR-193a-mediated maintenance of PECs in an undifferentiated reactive state might be a prerequisite for PEC proliferation and migration in crescent formation.
Project description:The Krüppel-like factor 4 (KLF4) transcription factor suppresses tumorigenesis in gastrointestinal epithelium. Thus, its expression is decreased in gastric and colon cancers. Moreover, KLF4 regulates both differentiation and growth that is likely fundamental to its tumor suppressor activity. We dissected the expression of Klf4 in the normal mouse intestinal epithelium along the crypt-villus and cephalo-caudal axes. Klf4 reached its highest level in differentiated cells of the villus, with levels in the duodenum>jejunum>ileum, in inverse relation to the representation of goblet cells in these regions, the lineage previously linked to KLF4. In parallel, in vitro studies using HT29cl.16E and Caco2 colon cancer cell lines clarified that KLF4 increased coincident with differentiation along both the goblet and absorptive cell lineages, respectively, and that KLF4 levels also increased during differentiation induced by the short chain fatty acid butyrate, independently of cell fate. Moreover, we determined that lower levels of KLF4 expression in the proliferative compartment of the intestinal epithelium are regulated by the transcription factors TCF4 and SOX9, an effector and a target, respectively, of beta-catenin/Tcf signaling, and independently of CDX2. Thus, reduced levels of KLF4 tumor suppressor activity in colon tumors may be driven by elevated beta-catenin/Tcf signaling.
Project description:Podocytes are differentiated post-mitotic cells that cannot replace themselves after injury. Glomerular parietal epithelial cells are proposed to be podocyte progenitors. To test whether a subset of parietal epithelial cells transdifferentiate to a podocyte fate, dual reporter PEC-rtTA|LC1|tdTomato|Nphs1-FLPo|FRT-EGFP mice, named PEC-PODO, were generated. Doxycycline administration permanently labeled parietal epithelial cells with tdTomato reporter (red), and upon doxycycline removal, the parietal epithelial cells (PECs) cannot label further. Despite the presence or absence of doxycycline, podocytes cannot label with tdTomato, but are constitutively labeled with an enhanced green fluorescent protein (EGFP) reporter (green). Only activation of the Nphs1-FLPo transgene by labeled parietal epithelial cells can generate a yellow color. At day 28 of experimental focal segmental glomerulosclerosis, podocyte density was 20% lower in 20% of glomeruli. At day 56 of experimental focal segmental glomerulosclerosis, podocyte density was 18% lower in 17% of glomeruli. TdTomato+ parietal epithelial cells were restricted to Bowman's capsule in healthy mice. However, by days 28 and 56 of experimental disease, two-thirds of tdTomato+ parietal epithelial cells within glomerular tufts were yellow in color. These cells co-expressed the podocyte markers podocin, nephrin, p57 and VEGF164, but not markers of endothelial (ERG) or mesangial (Perlecan) cells. Expansion microscopy showed primary, secondary and minor processes in tdTomato+EGFP+ cells in glomerular tufts. Thus, our studies provide strong evidence that parietal epithelial cells serve as a source of new podocytes in adult mice.