Project description:The propensity to manufacture functional and geometrically sophisticated parts from a wide range of metals provides the metal additive manufacturing (AM) processes superior advantages over traditional methods. The field of metal AM is currently dominated by beam-based technologies such as selective laser sintering (SLM) or electron beam melting (EBM) which have some limitations such as high production cost, residual stress and anisotropic mechanical properties induced by melting of metal powders followed by rapid solidification. So, there exist a significant gap between industrial production requirements and the qualities offered by well-established beam-based AM technologies. Therefore, beamless metal AM techniques (known as non-beam metal AM) have gained increasing attention in recent years as they have been found to be able to fill the gap and bring new possibilities. There exist a number of beamless processes with distinctively various characteristics that are either under development or already available on the market. Since this is a very promising field and there is currently no high-quality review on this topic yet, this paper aims to review the key beamless processes and their latest developments.
Project description:X-ray micro computed tomography (microCT) can be applied to analyse powder feedstock used in additive manufacturing. In this paper, we demonstrate a dedicated workflow for this analysis method, specifically for Ti6Al4V powder typically used in commercial powder bed fusion (PBF) additive manufacturing (AM) systems. The methodology presented includes sample size requirements, scan conditions and settings, reconstruction and image analysis procedures. We envisage this method will support standardization in powder analysis in the additive manufacturing community. This is aimed at ultimately improving the quality of additively manufactured parts, through the identification of impurities and defects in powders. •MicroCT analysis of metal powders for additive manufacturing•Method describes a standard workflow simplifying usage of the technique•Sample requirements and image analysis workflow is described.
Project description:Additive manufacturing (AM) of complex three-dimensional (3D) metal oxides at the micro- and nanoscales has attracted considerable attention in recent years. State-of-the-art techniques that use slurry-based or organic-inorganic photoresins are often hampered by challenges in resin preparation and synthesis, and/or by the limited resolution of patterned features. A facile process for fabricating 3D-architected metal oxides via the use of an aqueous metal-ion-containing photoresin is presented. The efficacy of this process, which is termed photopolymer complex synthesis, is demonstrated by creating nanoarchitected zinc oxide (ZnO) architectures with feature sizes of 250 nm, by first patterning a zinc-ion-containing aqueous photoresin using two-photon lithography and subsequently calcining them at 500 ºC. Transmission electron microscopy (TEM) analysis reveals their microstructure to be nanocrystalline ZnO with grain sizes of 5.1 ± 1.6 nm. In situ compression experiments conducted in a scanning electron microscope show an emergent electromechanical response: a 200 nm mechanical compression of an architected ZnO structure results in a voltage drop of 0.52 mV. This photopolymer complex synthesis provides a pathway to easily create arbitrarily shaped 3D metal oxides that could enable previously impossible devices and smart materials.
Project description:BackgroundAdditive manufacturing (AM) is a rapidly expanding new technology involving challenges to occupational health. Here, metal exposure in an AM facility with large-scale metallic component production was investigated during two consecutive years with preventive actions in between.MethodsGravimetric analyzes measured airborne particle concentrations, and filters were analyzed for metal content. In addition, concentrations of airborne particles <300 nm were investigated. Particles from recycled powder were characterized. Biomonitoring of urine and dermal contamination among AM operators, office personnel, and welders was performed.ResultsTotal and inhalable dust levels were almost all below occupational exposure limits, but inductively coupled plasma mass spectrometry showed that AM operators had a significant increase in cobalt exposure compared with welders. Airborne particle concentrations (<300 nm) showed transient peaks in the AM facility but were lower than those of the welding facility. Particle characterization of recycled powder showed fragmentation and condensates enriched in volatile metals. Biomonitoring showed a nonsignificant increase in the level of metals in urine in AM operators. Dermal cobalt and a trend for increasing urine metals during Workweek Year 1, but not in Year 2, indicated reduced exposure after preventive actions.ConclusionGravimetric analyses showed low total and inhalable dust exposure in AM operators. However, transient emission of smaller particles constitutes exposure risks. Preventive actions implemented by the company reduced the workers' metal exposure despite unchanged emissions of particles, indicating a need for careful design and regulation of the AM environments. It also emphasizes the need for relevant exposure markers and biomonitoring of health risks.
Project description:The process instabilities intrinsic to the localized laser-powder bed interaction cause the formation of various defects in laser powder bed fusion (LPBF) additive manufacturing process. Particularly, the stochastic formation of large spatters leads to unpredictable defects in the as-printed parts. Here we report the elimination of large spatters through controlling laser-powder bed interaction instabilities by using nanoparticles. The elimination of large spatters results in 3D printing of defect lean sample with good consistency and enhanced properties. We reveal that two mechanisms work synergistically to eliminate all types of large spatters: (1) nanoparticle-enabled control of molten pool fluctuation eliminates the liquid breakup induced large spatters; (2) nanoparticle-enabled control of the liquid droplet coalescence eliminates liquid droplet colliding induced large spatters. The nanoparticle-enabled simultaneous stabilization of molten pool fluctuation and prevention of liquid droplet coalescence discovered here provide a potential way to achieve defect lean metal additive manufacturing.
Project description:Electron beam freeform fabrication is a wire feed direct energy deposition additive manufacturing process, where the vacuum condition ensures excellent shielding against the atmosphere and enables processing of highly reactive materials. In this work, this technique is applied for the α + β-titanium alloy Ti-6Al-4V to determine suitable process parameter for robust building. The correlation between dimensions and the dilution of single beads based on selected process parameters, leads to an overlapping distance in the range of 70%-75% of the bead width, resulting in a multi-bead layer with a uniform height and with a linear build-up rate. Moreover, the stacking of layers with different numbers of tracks using an alternating symmetric welding sequence allows the manufacturing of simple structures like walls and blocks. Microscopy investigations reveal that the primary structure consists of epitaxial grown columnar prior β-grains, with some randomly scattered macro and micropores. The developed microstructure consists of a mixture of martensitic and finer α-lamellar structure with a moderate and uniform hardness of 334 HV, an ultimate tensile strength of 953 MPa and rather low fracture elongation of 4.5%. A subsequent stress relief heat treatment leads to a uniform hardness distribution and an extended fracture elongation of 9.5%, with a decrease of the ultimate strength to 881 MPa due to the fine α-lamellar structure produced during the heat treatment. Residual stresses measured by energy dispersive X-ray diffraction shows after deposition 200-450 MPa in tension in the longitudinal direction, while the stresses reach almost zero when the stress relief treatment is carried out.
Project description:Interest in additive manufacturing (AM) has dramatically expanded in the last several years, owing to the paradigm shift that the process provides over conventional manufacturing. Although the vast majority of recent work in AM has focused on three-dimensional printing in polymers, AM techniques for fabricating metal alloys have been available for more than a decade. Here, laser deposition (LD) is used to fabricate multifunctional metal alloys that have a strategically graded composition to alter their mechanical and physical properties. Using the technique in combination with rotational deposition enables fabrication of compositional gradients radially from the center of a sample. A roadmap for developing gradient alloys is presented that uses multi-component phase diagrams as maps for composition selection so as to avoid unwanted phases. Practical applications for the new technology are demonstrated in low-coefficient of thermal expansion radially graded metal inserts for carbon-fiber spacecraft panels.
Project description:IntroductionAdditive manufacturing is a novel state-of-the art technology with significant economic and practical advantages, including the ability to produce complex structures on demand while reducing the need of stocking materials and products. Additive manufacturing is a technology that is here to stay; however, new technologies bring new challenges, not only technical but also from an occupational health and safety perspective. Herein, leading Swedish companies using metal additive manufacturing were studied with the aim of investigating occupational exposure and the utility of chosen exposure- and clinical markers as predictors of potential exposure-related health risks.MethodsExposure levels were investigated by analysis of airborne dust and metals, alongside particle counting instruments measuring airborne particles in the range of 10 nm-10 μm to identify dusty work tasks. Health examinations were performed on a total of 48 additive manufacturing workers and 39 controls. All participants completed a questionnaire, underwent spirometry, and blood and urine sampling. A subset underwent further lung function tests.ResultsExposure to inhalable dust and metals were low, but particle counting instruments identified specific work tasks with high particle emissions. Examined health parameters were well within reference values on a group level. However, statistical analysis implied an impact on workers kidney function and possible airway inflammation.ConclusionThe methodology was successful for investigating exposure-related health risks in additive manufacturing. However, most participants have been working <5 years. Therefore, long-term studies are needed before we can conclusively accept or reject the observed effects on health.
Project description:The high-speed synchrotron X-ray imaging technique was synchronized with a custom-built laser-melting setup to capture the dynamics of laser powder-bed fusion processes in situ. Various significant phenomena, including vapor-depression and melt-pool dynamics and powder-spatter ejection, were captured with high spatial and temporal resolution. Imaging frame rates of up to 10 MHz were used to capture the rapid changes in these highly dynamic phenomena. At the same time, relatively slow frame rates were employed to capture large-scale changes during the process. This experimental platform will be vital in the further understanding of laser additive manufacturing processes and will be particularly helpful in guiding efforts to reduce or eliminate microstructural defects in additively manufactured parts.
Project description:Cold Spray Additive Manufacturing (CSAM) is an emergent technique to produce parts by the additive method, and, like other technologies, it has pros and cons. Some advantages are using oxygen-sensitive materials to make parts, such as Ti alloys, with fast production due to the high deposition rate, and lower harmful residual stress levels. However, the limitation in the range of the parts' geometries is a huge CSAM con. This work presents a new conceptual strategy for CSAM spraying. The controlled manipulation of the robot arm combined with the proper spraying parameters aims to optimize the deposition efficiency and the adhesion of particles on the part sidewalls, resulting in geometries from thin straight walls, less than 5 mm thick, up to large bulks. This new strategy, Metal Knitting, is presented regarding its fundamentals and by comparing the parts' geometries produced by Metal Knitting with the traditional strategy. The Metal Knitting described here made parts with vertical sidewalls, in contrast to the 40 degrees of inclination obtained by the traditional strategy. Their mechanical properties, microstructures, hardness, and porosity are also compared for Cu, Ti, Ti6Al4V, 316L stainless steel, and Al.