Ontology highlight
ABSTRACT: Background
Previous studies have shown that heart failure (HF) and chronic kidney disease (CKD) have common genetic mechanisms, overlapping pathophysiological pathways, and therapeutic drug-sodium-glucose cotransporter 2 (SGLT2) inhibitors.Methods
The genetic pleiotropy metaCCA method was applied on summary statistics data from two independent meta-analyses of GWAS comprising more than 1 million people to identify shared variants and pleiotropic effects between HF and CKD. Targets of SGLT2 inhibitors were predicted by SwissTargetPrediction and DrugBank databases. To refine all genes, we performed using versatile gene-based association study 2 (VEGAS2) and transcriptome-wide association studies (TWAS) for HF and CKD, respectively. Gene enrichment and KEGG pathway analyses were used to explore the potential functional significance of the identified genes and targets.Results
After metaCCA analysis, 4,624 SNPs and 1,745 genes were identified to be potentially pleiotropic in the univariate and multivariate SNP-multivariate phenotype analyses, respectively. 21 common genes were detected in both metaCCA and SGLT2 inhibitors' target prediction. In addition, 169 putative pleiotropic genes were identified, which met the significance threshold both in metaCCA analysis and in the VEGAS2 or TWAS analysis for at least one disease.Conclusion
We identified novel variants associated with HF and CKD using effectively incorporating information from different GWAS datasets. Our analysis may provide new insights into HF and CKD therapeutic approaches based on the pleiotropic genes, common targets, and mechanisms by integrating the metaCCA method, TWAS and VEGAS2 analyses, and target prediction of SGLT2 inhibitors.
SUBMITTER: Li H
PROVIDER: S-EPMC8443964 | biostudies-literature |
REPOSITORIES: biostudies-literature