Ontology highlight
ABSTRACT: Rationale and objective
To perform a meta-analysis to compare the diagnostic test accuracy (DTA) of deep learning (DL) in detecting coronavirus disease 2019 (COVID-19), and to investigate how network architecture and type of datasets affect DL performance.Materials and methods
We searched PubMed, Web of Science and Inspec from January 1, 2020, to December 3, 2020, for retrospective and prospective studies on deep learning detection with at least reported sensitivity and specificity. Pooled DTA was obtained using random-effect models. Sub-group analysis between studies was also carried out for data source and network architectures.Results
The pooled sensitivity and specificity were 91% (95% confidence interval [CI]: 88%, 93%; I2 = 69%) and 92% (95% CI: 88%, 94%; I2 = 88%), respectively for 19 studies. The pooled AUC and diagnostic odds ratio (DOR) were 0.95 (95% CI: 0.88, 0.92) and 112.5 (95% CI: 57.7, 219.3; I2 = 90%) respectively. The overall accuracy, recall, F1-score, LR+ and LR- are 89.5%, 89.5%, 89.7%, 23.13 and 0.13. Sub-group analysis shows that the sensitivity and DOR significantly vary with the type of network architectures and sources of data with low heterogeneity are (I2 = 0%) and (I2 = 18%) for ResNet architecture and single-source datasets, respectively.Conclusion
The diagnosis of COVID-19 via deep learning has achieved incredible performance, and the source of datasets, as well as network architectures, strongly affect DL performance.
SUBMITTER: Komolafe TE
PROVIDER: S-EPMC8445811 | biostudies-literature |
REPOSITORIES: biostudies-literature