Project description:Free fatty acid dysregulation in diabetics may elicit the release of inflammatory cytokines from Müller cells (MC), promoting the onset and progression of diabetic retinopathy (DR). Palmitic acid (PA) is elevated in the sera of diabetics and stimulates the production of the DR-relevant cytokines by MC, including IL-1β, which induces the production of itself and other inflammatory cytokines in the retina as well. In this study we propose that experimental elevation of cytochrome P450 epoxygenase (CYP)-derived epoxygenated fatty acids, epoxyeicosatrienoic acid (EET) and epoxydocosapentaenoic acid (EDP), will reduce PA- and IL-1β-induced MC inflammation. Broad-spectrum CYP inhibition by SKF-525a increased MC expression of inflammatory cytokines. Exogenous 11,12-EET and 19,20-EDP significantly decreased PA- and IL-1β-induced MC expression of IL-1β and IL-6. Both epoxygenated fatty acids significantly decreased IL-8 expression in IL-1β-induced MC and TNFα in PA-induced MC. Interestingly, 11,12-EET and 19,20-EDP significantly increased TNFα in IL-1β-treated MC. GSK2256294, a soluble epoxide hydrolase (sEH) inhibitor, significantly reduced PA- and IL-1β-stimulated MC cytokine expression. 11,12-EET and 19,20-EDP were also found to decrease PA- and IL-1β-induced NFκB-dependent transcriptional activity. These data suggest that experimental elevation of 11,12-EET and 19,20-EDP decreases MC inflammation in part by blocking NFκB-dependent transcription and may represent a viable therapeutic strategy for inhibition of early retinal inflammation in DR.
Project description:Due to the aging population in the world, neurodegenerative diseases have become a serious public health issue that greatly impacts patients' quality of life and adds a huge economic burden. Even after decades of research, there is no effective curative treatment for neurodegenerative diseases. Polyunsaturated fatty acids (PUFAs) have become an emerging dietary medical intervention for health maintenance and treatment of diseases, including neurodegenerative diseases. Recent research demonstrated that the oxidized metabolites, particularly the cytochrome P450 (CYP) metabolites, of PUFAs are beneficial to several neurodegenerative diseases, including Alzheimer's disease and Parkinson's disease; however, their mechanism(s) remains unclear. The endogenous levels of CYP metabolites are greatly affected by our diet, endogenous synthesis, and the downstream metabolism. While the activity of omega-3 (ω-3) CYP PUFA metabolites and omega-6 (ω-6) CYP PUFA metabolites largely overlap, the ω-3 CYP PUFA metabolites are more active in general. In this review, we will briefly summarize recent findings regarding the biosynthesis and metabolism of CYP PUFA metabolites. We will also discuss the potential mechanism(s) of CYP PUFA metabolites in neurodegeneration, which will ultimately improve our understanding of how PUFAs affect neurodegeneration and may identify potential drug targets for neurodegenerative diseases.
Project description:The objective of the present study was to assess the effect of elevating epoxygenated fatty acids on retinal vascular inflammation. To stimulate inflammation we utilized TNF?, a potent pro-inflammatory mediator that is elevated in the serum and vitreous of diabetic patients. In TNF?-stimulated primary human retinal microvascular endothelial cells, total levels of epoxyeicosatrienoic acids (EETs), but not epoxydocosapentaenoic acids (EDPs), were significantly decreased. Exogenous addition of 11,12-EET or 19,20-EDP when combined with 12-(3-adamantane-1-yl-ureido)-dodecanoic acid (AUDA), an inhibitor of epoxide hydrolysis, inhibited VCAM-1 and ICAM-1 expression and protein levels; conversely the diol product of 19,20-EDP hydrolysis, 19,20-DHDP, induced VCAM1 and ICAM1 expression. 11,12-EET and 19,20-EDP also inhibited leukocyte adherence to human retinal microvascular endothelial cell monolayers and leukostasis in an acute mouse model of retinal inflammation. Our results indicate that this inhibition may be mediated through an indirect effect on NF?B activation. This is the first study demonstrating a direct comparison of EET and EDP on vascular inflammatory endpoints, and we have confirmed a comparable efficacy from each isomer, suggesting a similar mechanism of action. Taken together, these data establish that epoxygenated fatty acid elevation will inhibit early pathology related to TNF?-induced inflammation in retinal vascular diseases.
Project description:In the present study, we explored the hypothesis that the fatty liver phenotype and associated gene expression changes associated with the specific deletion of the POR gene in adult mouse liver could be abrogated by supplementation of the mouse diet with the very long chain highly unsaturated fatty acids, arachidonic acid (C20:4ω6), eicosapentaenoic acid (C20:5ω3) and docosahexaenoic acid (C22:6ω3). We expected the fatty liver phenotype would not be reduced by the polyunsaturated fatty acids linoleic (C18:2ω6) or linolenic acid (C18:3ω3), since these accumulated in the fatty livers of LivPORKO animals. This proved to be the case. However, we also made two surprising observations. First, control animals fed a diet enriched in PUFA had fatty livers and gene expression profiles similar to animals fed a lard diet, which was deficient in both PUFA and HUFA. Second, while a diet enriched in HUFA did result in reduced steatosis in livers of the LivPOKO animals, fat accumulation was still elevated relative to controls. Array analyses indicated most differences in gene expression were related to fatty acid metabolism and could explain differences in fat accumulation in LivPORKO livers with dietary treatment.
Project description:CYP4B1 is an enigmatic mammalian cytochrome P450 monooxygenase acting at the interface between xenobiotic and endobiotic metabolism. A prominent CYP4B1 substrate is the furan pro-toxin 4-ipomeanol (IPO). Our recent investigation on metabolism of IPO related compounds that maintain the furan functionality of IPO while replacing its alcohol group with alkyl chains of varying structure and length revealed that, in addition to cytotoxic reactive metabolite formation (resulting from furan activation) non-cytotoxic ω-hydroxylation at the alkyl chain can also occur. We hypothesized that substrate reorientations may happen in the active site of CYP4B1. These findings prompted us to re-investigate oxidation of unsaturated fatty acids and fatty alcohols with C9-C16 carbon chain length by CYP4B1. Strikingly, we found that besides the previously reported ω- and ω-1-hydroxylations, CYP4B1 is also capable of α-, β-, γ-, and δ-fatty acid hydroxylation. In contrast, fatty alcohols of the same chain length are exclusively hydroxylated at ω, ω-1, and ω-2 positions. Docking results for the corresponding CYP4B1-substrate complexes revealed that fatty acids can adopt U-shaped bonding conformations, such that carbon atoms in both arms may approach the heme-iron. Quantum chemical estimates of activation energies of the hydrogen radical abstraction by the reactive compound 1 as well as electron densities of the substrate orbitals led to the conclusion that fatty acid and fatty alcohol oxidations by CYP4B1 are kinetically controlled reactions.
Project description:Eicosapentaenoic acid (EPA) and docosahexaenoic acid (DHA) protect against cardiovascular disease by largely unknown mechanisms. We tested the hypothesis that EPA and DHA may compete with arachidonic acid (AA) for the conversion by cytochrome P450 (CYP) enzymes, resulting in the formation of alternative, physiologically active, metabolites. Renal and hepatic microsomes, as well as various CYP isoforms, displayed equal or elevated activities when metabolizing EPA or DHA instead of AA. CYP2C/2J isoforms converting AA to epoxyeicosatrienoic acids (EETs) preferentially epoxidized the ?-3 double bond and thereby produced 17,18-epoxyeicosatetraenoic (17,18-EEQ) and 19,20-epoxydocosapentaenoic acid (19,20-EDP) from EPA and DHA. We found that these ?-3 epoxides are highly active as antiarrhythmic agents, suppressing the Ca(2+)-induced increased rate of spontaneous beating of neonatal rat cardiomyocytes, at low nanomolar concentrations. CYP4A/4F isoforms ?-hydroxylating AA were less regioselective toward EPA and DHA, catalyzing predominantly ?- and ? minus 1 hydroxylation. Rats given dietary EPA/DHA supplementation exhibited substantial replacement of AA by EPA and DHA in membrane phospholipids in plasma, heart, kidney, liver, lung, and pancreas, with less pronounced changes in the brain. The changes in fatty acids were accompanied by concomitant changes in endogenous CYP metabolite profiles (e.g. altering the EET/EEQ/EDP ratio from 87:0:13 to 27:18:55 in the heart). These results demonstrate that CYP enzymes efficiently convert EPA and DHA to novel epoxy and hydroxy metabolites that could mediate some of the beneficial cardiovascular effects of dietary ?-3 fatty acids.
Project description:There are two types of cytochrome P450 enzymes in nature, namely, the monooxygenases and the peroxygenases. Both enzyme classes participate in substrate biodegradation or biosynthesis reactions in nature, but the P450 monooxygenases use dioxygen, while the peroxygenases take H2O2 in their catalytic cycle instead. By contrast to the P450 monooxygenases, the P450 peroxygenases do not require an external redox partner to deliver electrons during the catalytic cycle, and also no external proton source is needed. Therefore, they are fully self-sufficient, which affords them opportunities in biotechnological applications. One specific P450 peroxygenase, namely, P450 OleTJE, reacts with long-chain linear fatty acids through oxidative decarboxylation to form hydrocarbons and, as such, has been implicated as a suitable source for the biosynthesis of biofuels. Unfortunately, the reactions were shown to produce a considerable amount of side products originating from Cα and Cβ hydroxylation and desaturation. These product distributions were found to be strongly dependent on whether the substrate had substituents on the Cα and/or Cβ atoms. To understand the bifurcation pathways of substrate activation by P450 OleTJE leading to decarboxylation, Cα hydroxylation, Cβ hydroxylation and Cα-Cβ desaturation, we performed a computational study using 3-phenylpropionate and 2-phenylbutyrate as substrates. We set up large cluster models containing the heme, the substrate and the key features of the substrate binding pocket and calculated (using density functional theory) the pathways leading to the four possible products. This work predicts that the two substrates will react with different reaction rates due to accessibility differences of the substrates to the active oxidant, and, as a consequence, these two substrates will also generate different products. This work explains how the substrate binding pocket of P450 OleTJE guides a reaction to a chemoselectivity.
Project description:Polyunsaturated fatty acids (PUFA) and their cytochrome P450 (CYP450) metabolites have been linked to angiogenesis and vessel homeostasis. However, the role of individual CYP isoforms and their endogenous metabolites in those processes are not clear. Here, we focused on the role of Cyp2c44 in postnatal retinal angiogenesis and report that Cyp2c44 is highly expressed in Müller glial cells in the retina. The constitutive as well as inducible postnatal genetic deletion of Cyp2c44 resulted in an increased vessel network density without affecting vessel radial expansion during the first postnatal week. This phenotype was associated with an increased endothelial cell proliferation and attenuated Notch signaling. LC-MS/MS analyses revealed that levels of hydroxydocosahexaenoic acids (HDHA), i.e., 10-, 17- and 20-HDHA were significantly elevated in retinas from 5day old Cyp2c44-/- mice compared to their wild-type littermates. Enzymatic activity assays revealed that HDHAs were potential substrates for Cyp2c44 which could account for the increased levels of HDHAs in retinas from Cyp2c44-/- mice. These data indicate that Cyp2c44 is expressed in the murine retina and, like the soluble epoxide hydrolase, is expressed in Müller glia cells. The enhanced endothelial cell proliferation and Notch inhibition seen in retinas from Cyp2c44-deficient mice indicate a role for Cyp2c44-derived lipid mediators in physiological angiogenesis.