Project description:BackgroundSince the first outbreak of coronavirus disease 2019 (COVID-19), it has been reported that several factors, including hypertension, type 2 diabetes mellitus, and obesity, have close relationships with a severe clinical course. However, the relationship between body composition and the prognosis of COVID-19 has not yet been fully studied.MethodsThe present study enrolled 76 consecutive COVID-19 patients with computed tomography (CT) scans from the chest to the pelvis at admission. The patients who needed intubation and mechanical ventilation were defined as severe cases. Patients were categorized into four groups according to their body mass index (BMI). The degree of hepatic steatosis was estimated by the liver/spleen (L/S) ratio of the CT values. Visceral fat area (VFA), psoas muscle area (PMA), psoas muscle mass index (PMI), and intra-muscular adipose tissue content (IMAC) were measured by CT scan tracing. These parameters were compared between non-severe and severe cases.ResultsSevere patients had significantly higher body weight, higher BMI, and greater VFA than non-severe patients. However, these parameters did not have an effect on disease mortality. Furthermore, severe cases had higher IMAC than non-severe cases in the non-obese group.ConclusionsOur data suggest high IMAC can be a useful predictor for severe disease courses of COVID-19 in non-obese Japanese patients, however, it does not predict either disease severity in obese patients or mortality in any obesity grade.
Project description:The antibiotic catabolic process and myeloid cell homeostasis were activated while the T-cell response were relatively repressed in those with the risk of secondary infection.
Project description:Dysregulated immune responses contribute to the excessive and uncontrolled inflammation observed in severe COVID-19. However, how immunity to SARS-CoV-2 is induced and regulated remains unclear. Here we uncover a role of the complement system in the induction of innate and adaptive immunity to SARS-CoV-2. Complement rapidly opsonizes SARS-CoV-2 particles via the lectin pathway. Complement-opsonized SARS-CoV-2 efficiently induces type-I interferon and pro-inflammatory cytokine responses via activation of dendritic cells, which are inhibited by antibodies against the complement receptors (CR) 3 and 4. Serum from COVID-19 patients, or monoclonal antibodies against SARS-CoV-2, attenuate innate and adaptive immunity induced by complement-opsonized SARS-CoV-2. Blocking of CD32, the FcγRII antibody receptor of dendritic cells, restores complement-induced immunity. These results suggest that opsonization of SARS-CoV-2 by complement is involved in the induction of innate and adaptive immunity to SARS-CoV-2 in the acute phase of infection. Subsequent antibody responses limit inflammation and restore immune homeostasis. These findings suggest that dysregulation of the complement system and FcγRII signaling may contribute to severe COVID-19.
Project description:To explore the relationship between SARS-CoV-2 infection in different time before operation and postoperative main complications (mortality, main pulmonary and cardiovascular complications) 30 days after operation; To determine the best timing of surgery after SARS-CoV-2 infection.
Project description:HAE cultures were infected with SARS-CoV, SARS-dORF6 or SARS-BatSRBD and were directly compared to A/CA/04/2009 H1N1 influenza-infected cultures. Cell samples were collected at various hours post-infection for analysis. Time Points = 0, 12, 24, 36, 48, 60, 72, 84 and 96 hrs post-infection for SARS-CoV, SARS-dORF6 and SARS-BatSRBD. Time Points = 0, 6, 12, 18, 24, 36 and 48 hrs post-infection for H1N1. Done in triplicate or quadruplicate for RNA Triplicates/quadruplicates are defined as 3/4 different wells, plated at the same time and using the same cell stock for all replicates. Time matched mocks done in triplicate from same cell stock as rest of samples. Culture medium (the same as what the virus stock is in) will be used for the mock infections. Infection was done at an MOI of 2.
Project description:HAE cultures were infected with SARS-CoV, SARS-ddORF6 or SARS-BatSRBD and were directly compared to A/CA/04/2009 H1N1 influenza-infected cultures. Cell samples were collected at various hours post-infection for analysis. Time Points = 0, 12, 24, 36, 48, 60, 72, 84 and 96 hrs post-infection for SARS-CoV. Time Points = 0, 24, 48, 60, 72, 84 and 96 hrs post-infection forSARS-ddORF6 and SARS-BatSRBD. Time Points = 0, 6, 12, 18, 24, 36 and 48 hrs post-infection for H1N1. Done in triplicate/quadruplicate for RNA Triplicates/quadruplicates are defined as 3/4 different wells, plated at the same time and using the same cell stock for all replicates. Time matched mocks done in triplicate from same cell stock as rest of samples. Culture medium (the same as what the virus stock is in) will be used for the mock infections. Infection was done at an MOI of 2.
Project description:HAE cultures were infected with SARS-CoV, SARS-dORF6 or SARS-BatSRBD and were directly compared to A/CA/04/2009 H1N1 influenza-infected cultures. Cell samples were collected at various hours post-infection for analysis. Time Points = 0, 12, 24, 36, 48, 60, 72, 84 and 96 hrs post-infection for SARS-CoV, SARS-dORF6 and SARS-BatSRBD. Time Points = 0, 6, 12, 18, 24, 36 and 48 hrs post-infection for H1N1. Done in triplicate for RNA Triplicates are defined as 3 different wells, plated at the same time and using the same cell stock for all replicates. Time matched mocks done in triplicate from same cell stock as rest of samples. Culture medium (the same as what the virus stock is in) will be used for the mock infections. Infection was done at an MOI of 2 for SARS viruses and an MOI of 1 for H1N1.
Project description:Interferon-induced transmembrane proteins (IFITMs) restrict infections by many viruses, but a subset of IFITMs enhance infections by specific coronaviruses through currently unknown mechanisms. We show that SARS-CoV-2 Spike-pseudotyped virus and genuine SARS-CoV-2 infections are generally restricted by human and mouse IFITM1, IFITM2, and IFITM3, using gain- and loss-of-function approaches. Mechanistically, SARS-CoV-2 restriction occurred independently of IFITM3 S-palmitoylation, indicating a restrictive capacity distinct from reported inhibition of other viruses. In contrast, the IFITM3 amphipathic helix and its amphipathic properties were required for virus restriction. Mutation of residues within the IFITM3 endocytosis-promoting Yxx? motif converted human IFITM3 into an enhancer of SARS-CoV-2 infection, and cell-to-cell fusion assays confirmed the ability of endocytic mutants to enhance Spike-mediated fusion with the plasma membrane. Overexpression of TMPRSS2, which increases plasma membrane fusion versus endosome fusion of SARS-CoV-2, attenuated IFITM3 restriction and converted amphipathic helix mutants into infection enhancers. In sum, we uncover new pro- and anti-viral mechanisms of IFITM3, with clear distinctions drawn between enhancement of viral infection at the plasma membrane and amphipathicity-based mechanisms used for endosomal SARS-CoV-2 restriction.
Project description:ObjectivesTo examine associations between weight change, body composition, risk of mobility disability, and mortality in older adults.DesignProspective, longitudinal, population-based cohort.SettingThe Health, Aging, and Body Composition Study.ParticipantsWomen (n = 1,044) and men (n = 931) aged 70 to 79.MeasurementsWeight and lean and fat mass from dual-energy X-ray absorptiometry measured annually over 5 years. Weight was defined as stable (n = 664, reference), loss (n = 662), gain (n = 321), or cycling (gain and loss, n = 328) using change of 5% from year to year or from Year 1 to 6. Mobility disability (two consecutive reports of difficulty walking one-quarter mile or climbing 10 steps) and mortality were determined for 8 years after the weight change period. Associations were analyzed using Cox proportional hazards regression adjusted for covariates.ResultsDuring follow-up, 313 women and 375 men developed mobility disability, and 322 women and 378 men died. There was no risk of mobility disability or mortality with weight gain. Weight loss (hazard ratio (HR) = 1.88, 95% confidence interval (CI) = 1.40-2.53) and weight cycling (HR = 1.59, 95% CI = 1.11-2.29) were associated with mobility disability in women, and weight loss was associated with mobility disability in men (HR = 1.30, 95% CI = 1.01-1.69). Weight loss and weight cycling were associated with mortality risk in women (weight loss: HR = 1.47, 95% CI = 1.07-2.01; weight cycling: HR = 1.62, 95% CI = 1.15-2.30) and in men (weight loss: HR = 1.41, 95% CI = 1.09-1.83; weight cycling: HR = 1.50, 95% CI = 1.08-2.08). Adjustment for lean and fat mass and change in lean and fat mass from Year 1 to 6 attenuated the relationships between weight loss and mobility disability in men and between weight loss and mortality in men and women.ConclusionWeight cycling and weight loss predict impending mobility disability and mortality in old age, underscoring the prognostic importance of weight history.
Project description:IntroductionQuantitative and accurate measurements of fat and muscle in the body are important for prevention and diagnosis of diseases related to obesity and muscle degeneration. Manually segmenting muscle and fat compartments in MR body-images is laborious and time-consuming, hindering implementation in large cohorts. In the present study, the feasibility and success-rate of a Dixon-based MR scan followed by an intensity-normalised, non-rigid, multi-atlas based segmentation was investigated in a cohort of 3,000 subjects.Materials and methods3,000 participants in the in-depth phenotyping arm of the UK Biobank imaging study underwent a comprehensive MR examination. All subjects were scanned using a 1.5 T MR-scanner with the dual-echo Dixon Vibe protocol, covering neck to knees. Subjects were scanned with six slabs in supine position, without localizer. Automated body composition analysis was performed using the AMRA Profiler™ system, to segment and quantify visceral adipose tissue (VAT), abdominal subcutaneous adipose tissue (ASAT) and thigh muscles. Technical quality assurance was performed and a standard set of acceptance/rejection criteria was established. Descriptive statistics were calculated for all volume measurements and quality assurance metrics.ResultsOf the 3,000 subjects, 2,995 (99.83%) were analysable for body fat, 2,828 (94.27%) were analysable when body fat and one thigh was included, and 2,775 (92.50%) were fully analysable for body fat and both thigh muscles. Reasons for not being able to analyse datasets were mainly due to missing slabs in the acquisition, or patient positioned so that large parts of the volume was outside of the field-of-view.Discussion and conclusionsIn conclusion, this study showed that the rapid UK Biobank MR-protocol was well tolerated by most subjects and sufficiently robust to achieve very high success-rate for body composition analysis. This research has been conducted using the UK Biobank Resource.