Project description:Dual oxidase 1 (DUOX1) is an NADPH oxidase that is highly expre-ssed in respiratory epithelial cells and produces H2O2 in the airway lumen. While a line of prior in vitro observations suggested that DUOX1 works in partnership with an airway peroxidase, lactoperoxidase (LPO), to produce antimicrobial hypothiocyanite (OSCN-) in the airways, the in vivo role of DUOX1 in mammalian organisms has remained unproven to date. Here, we show that Duox1 promotes antiviral innate immunity in vivo. Upon influenza airway challenge, Duox1-/- mice have enhanced mortality, morbidity, and impaired lung viral clearance. Duox1 increases the airway levels of several cytokines (IL-1β, IL-2, CCL1, CCL3, CCL11, CCL19, CCL20, CCL27, CXCL5, and CXCL11), contributes to innate immune cell recruitment, and affects epithelial apoptosis in the airways. In primary human tracheobronchial epithelial cells, OSCN- is generated by LPO using DUOX1-derived H2O2 and inactivates several influenza strains in vitro. We also show that OSCN- diminishes influenza replication and viral RNA synthesis in infected host cells that is inhibited by the H2O2 scavenger catalase. Binding of the influenza virus to host cells and viral entry are both reduced by OSCN- in an H2O2-dependent manner in vitro. OSCN- does not affect the neuraminidase activity or morphology of the influenza virus. Overall, this antiviral function of Duox1 identifies an in vivo role of this gene, defines the steps in the infection cycle targeted by OSCN-, and proposes that boosting this mechanism in vivo can have therapeutic potential in treating viral infections.
Project description:Innate immunity serves as the primary defense against viral and microbial infections in humans. Among its components, retinoic acid-inducible gene I (RIG-I)-like receptors (RLRs) are well-characterized intracellular pattern-recognition proteins that trigger innate immune responses upon viral infection. However, the precise influence of cellular metabolites, especially fatty acids, on the regulation of RLR-mediated antiviral innate immunity remains largely elusive. Here, through screening a metabolite library, palmitic acid (PA) has been identified as a crucial metabolite responsible for modulating antiviral infections. Mechanistically, PA induces the palmitoylation of MAVS, leading to MAVS aggregation and subsequent activation, thereby enhancing the innate immune response against viral infections. Functionally, the enzyme palmitoyl-transferase ZDHHC24 plays a key role in catalyzing the palmitoylation of MAVS at both C46 and C79 residues, thereby facilitating the transduction of RLR-mediated TBK1-IRF3-IFN signaling pathway, particularly under conditions of PA stimulation or high-fat diet feeding. Conversely, the absence of ZDHHC24 significantly attenuates virus-induced innate immune responses in both cells and mice. Moreover, APT2 counteracts with ZDHHC24 to de-palmitoylate MAVS, thus inhibiting the antiviral response. Consequently, inhibition of APT2 using compounds like ML349 effectively reverses MAVS palmitoylation and activation in response to antiviral infections. These findings underscore the critical role of PA and ZDHHC24 in regulating antiviral innate immunity through MAVS palmitoylation, and suggest potential therapeutic strategies for combating viral infections, such as enhancing PA intake or specifically targeting APT2.
Project description:The nucleotide-binding oligomerization domain-like receptor (Nlrp) 6 maintains gut microbiota homeostasis and regulates antibacterial immunity. We now report a role for Nlrp6 in the control of enteric virus infection. Nlrp6(-/-) and control mice systemically challenged with encephalomyocarditis virus had similar mortality; however, the gastrointestinal tract of Nlrp6(-/-) mice exhibited increased viral loads. Nlrp6(-/-) mice orally infected with encephalomyocarditis virus had increased mortality and viremia compared with controls. Similar results were observed with murine norovirus 1. Nlrp6 bound viral RNA via the RNA helicase Dhx15 and interacted with mitochondrial antiviral signaling protein to induce type I/III interferons (IFNs) and IFN-stimulated genes (ISGs). These data demonstrate that Nlrp6 functions with Dhx15 as a viral RNA sensor to induce ISGs, and this effect is especially important in the intestinal tract.
Project description:TANK-binding kinase 1 (TBK1), a core kinase of antiviral pathways, activates the production of interferons (IFNs). It has been reported that deacetylation activates TBK1; however, the precise mechanism still remains to be uncovered. We show here that during the early stage of viral infection, the acetylation of TBK1 was increased, and the acetylation of TBK1 at Lys241 enhanced the recruitment of IRF3 to TBK1. HDAC3 directly deacetylated TBK1 at Lys241 and Lys692, which resulted in the activation of TBK1. Deacetylation at Lys241 and Lys692 was critical for the kinase activity and dimerization of TBK1 respectively. Using knockout cell lines and transgenic mice, we confirmed that a HDAC3 null mutant exhibited enhanced susceptibility to viral challenge via impaired production of type I IFNs. Furthermore, activated TBK1 phosphorylated HDAC3, which promoted the deacetylation activity of HDAC3 and formed a feedback loop. In this study, we illustrated the roles the acetylated and deacetylated forms of TBK1 play in antiviral innate responses and clarified the post-translational modulations involved in the interaction between TBK1 and HDAC3.
Project description:Innate immune detection of viral nucleic acids during viral infection activates a signaling cascade that induces type I and type III IFNs as well as other cytokines, to generate an antiviral response. This signaling is initiated by pattern recognition receptors, such as the RNA helicase retinoic acid-inducible gene I (RIG-I), that sense viral RNA. These sensors then interact with the adaptor protein mitochondrial antiviral signaling protein (MAVS), which recruits additional signaling proteins, including TNF receptor-associated factor 3 (TRAF3) and TANK-binding kinase 1 (TBK1), to form a signaling complex that activates IFN regulatory factor 3 (IRF3) for transcriptional induction of type I IFNs. Here, using several immunological and biochemical approaches in multiple human cell types, we show that the GTPase-trafficking protein RAB1B up-regulates RIG-I pathway signaling and thereby promotes IFN-β induction and the antiviral response. We observed that RAB1B overexpression increases RIG-I-mediated signaling to IFN-β and that RAB1B deletion reduces signaling of this pathway. Additionally, loss of RAB1B dampened the antiviral response, indicated by enhanced Zika virus infection of cells depleted of RAB1B. Importantly, we identified the mechanism of RAB1B action in the antiviral response, finding that it forms a protein complex with TRAF3 to facilitate the interaction of TRAF3 with mitochondrial antiviral signaling protein. We conclude that RAB1B regulates TRAF3 and promotes the formation of innate immune signaling complexes in response to nucleic acid sensing during RNA virus infection.
Project description:Bone morphogenetic proteins (BMPs) are a group of structurally and functionally related signaling molecules that comprise a subfamily, belonging to the TGF-β superfamily. Most BMPs play roles in the regulation of embryonic development, stem cell differentiation, tumor growth and some cardiovascular and cerebrovascular diseases. Although evidence is emerging for the antiviral immunity of a few BMPs, more BMPs are needed to determine whether this function is universal. Here, we identified the zebrafish bmp4 ortholog, whose expression is up-regulated through challenge with grass carp reovirus (GCRV) or its mimic poly(I:C). The overexpression of bmp4 in epithelioma papulosum cyprini (EPC) cells significantly decreased the viral titer of GCRV-infected cells. Moreover, compared to wild-type zebrafish, viral load and mortality were significantly increased in both larvae and adults of bmp4-/- mutant zebrafish infected with GCRV virus. We further demonstrated that Bmp4 promotes the phosphorylation of Tbk1 and Irf3 through the p38 MAPK pathway, thereby inducing the production of type I IFNs in response to virus infection. These data suggest that Bmp4 plays an important role in the host defense against virus infection. Our study expands the understanding of BMP protein functions and opens up new targets for the control of viral infection.
Project description:Deposition of amyloid-β (Aβ) in cerebral arteries, known as cerebral amyloid angiopathy (CAA), occurs both in the setting of Alzheimer's disease and independent of it, and can cause cerebrovascular insufficiency and cognitive deficits. The mechanisms leading to CAA have not been established, and no therapeutic targets have been identified. We investigated the role of CD36, an innate immunity receptor involved in Aβ trafficking, in the neurovascular dysfunction, cognitive deficits, and amyloid accumulation that occurs in mice expressing the Swedish mutation of the amyloid precursor protein (Tg2576). We found that Tg2576 mice lacking CD36 have a selective reduction in Aβ1-40 and CAA. This reduced vascular amyloid deposition was associated with preservation of the Aβ vascular clearance receptor LRP-1, and protection from the deleterious effects of Aβ on cerebral arterioles. These beneficial vascular effects were reflected by marked improvements in neurovascular regulation and cognitive performance. Our data suggest that CD36 promotes vascular amyloid deposition and the resulting cerebrovascular damage, leading to neurovascular dysfunction and cognitive deficits. These findings identify a previously unrecognized role of CD36 in the mechanisms of vascular amyloid deposition, and suggest that this scavenger receptor is a putative therapeutic target for CAA and related conditions.
Project description:Innate immunity plays an essential role in preventing the invasion of pathogenic microorganisms. However, innate immunity is a double-edged sword, whose excessive activation is detrimental to immune homeostasis and even leads to a “cytokine storm” of the infected host. The host develops a series of negative regulatory mechanisms to balance the immune response. Here, we report a negative regulatory mechanism of chicken innate immunity mediated by miRNA. In the GEO database, we found that miR-126-5p was markedly up-regulated in chickens infected by RNA viruses. Upregulation of miR-126-5p by RNA virus was then further shown via both a cell model and in vivo tests. Overexpression of miR-126-5p significantly inhibited the expression of interferon and inflammatory cytokine-related genes induced by RNA viruses. The opposite result was achieved after the knockdown of miR-126-5p expression. Bioinformatics analysis identified TRAF3 as candidate target gene of miR-126-5p. Experimentally, miR-126-5p can target TRAF3, as shown by the effects of miR-126-5p on the endogenous expression of TRAF3, and by the TRAF3 3'UTR driven luciferase reporter assay. Furthermore, we demonstrated that miR-126-5p negatively regulated innate immunity by blocking the MAVS-TRAF3-TBK1 axis, with a co-expression assay. Overall, our results suggest that miR-126-5p is involved in the negative regulation of chicken innate immunity, which might contribute to maintaining immune balance. Supplementary Information The online version contains supplementary material available at 10.1186/s13567-022-01098-x.
Project description:Stimulator of interferon genes (STING) is an adaptor protein that is critical for effective innate antiviral and antitumor immunity. The activity of STING is heavily regulated by protein ubiquitination, which is fine-tuned by both E3 ubiquitin ligases and deubiquitinases. Here, we report that the deubiquitinase OTUD5 interacts with STING, cleaves its K48-linked polyubiquitin chains, and promotes its stability. Consistently, knockout of OTUD5 resulted in faster turnover of STING and subsequently impaired type I IFN signaling following cytosolic DNA stimulation. More importantly, Lyz2-Cre Otud5fl/Y mice and CD11-Cre Otud5fl/Y mice showed more susceptibility to herpes simplex virus type 1 (HSV-1) infection and faster development of melanomas than their corresponding control littermates, indicating that OTUD5 is indispensable for STING-mediated antiviral and antitumor immunity. Our data suggest that OTUD5 is a novel checkpoint in the cGAS-STING cytosolic DNA sensing pathway.