Project description:BackgroundVaccines to prevent coronavirus disease 2019 (Covid-19) are urgently needed. The effect of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) vaccines on viral replication in both upper and lower airways is important to evaluate in nonhuman primates.MethodsNonhuman primates received 10 or 100 μg of mRNA-1273, a vaccine encoding the prefusion-stabilized spike protein of SARS-CoV-2, or no vaccine. Antibody and T-cell responses were assessed before upper- and lower-airway challenge with SARS-CoV-2. Active viral replication and viral genomes in bronchoalveolar-lavage (BAL) fluid and nasal swab specimens were assessed by polymerase chain reaction, and histopathological analysis and viral quantification were performed on lung-tissue specimens.ResultsThe mRNA-1273 vaccine candidate induced antibody levels exceeding those in human convalescent-phase serum, with live-virus reciprocal 50% inhibitory dilution (ID50) geometric mean titers of 501 in the 10-μg dose group and 3481 in the 100-μg dose group. Vaccination induced type 1 helper T-cell (Th1)-biased CD4 T-cell responses and low or undetectable Th2 or CD8 T-cell responses. Viral replication was not detectable in BAL fluid by day 2 after challenge in seven of eight animals in both vaccinated groups. No viral replication was detectable in the nose of any of the eight animals in the 100-μg dose group by day 2 after challenge, and limited inflammation or detectable viral genome or antigen was noted in lungs of animals in either vaccine group.ConclusionsVaccination of nonhuman primates with mRNA-1273 induced robust SARS-CoV-2 neutralizing activity, rapid protection in the upper and lower airways, and no pathologic changes in the lung. (Funded by the National Institutes of Health and others.).
Project description:B.1.351 is the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) variant most resistant to antibody neutralization. We demonstrate how the dose and number of immunizations influence protection. Nonhuman primates received two doses of 30 or 100 µg of Moderna's mRNA-1273 vaccine, a single immunization of 30 µg, or no vaccine. Two doses of 100 µg of mRNA-1273 induced 50% inhibitory reciprocal serum dilution neutralizing antibody titers against live SARS-CoV-2 p.Asp614Gly and B.1.351 of 3,300 and 240, respectively. Higher neutralizing responses against B.1.617.2 were also observed after two doses compared to a single dose. After challenge with B.1.351, there was ~4- to 5-log10 reduction of viral subgenomic RNA and low to undetectable replication in bronchoalveolar lavages in the two-dose vaccine groups, with a 1-log10 reduction in nasal swabs in the 100-µg group. These data establish that a two-dose regimen of mRNA-1273 will be critical for providing upper and lower airway protection against major variants of concern.
Project description:Vaccine-elicited SARS-CoV-2 antibody responses are an established correlate of protection against viral infection in humans and nonhuman primates. However, it is less clear that vaccine-induced immunity is able to limit infection-elicited inflammation in the lower respiratory tract. To assess this, we collected bronchoalveolar lavage fluid samples after SARS-CoV-2 strain USA-WA1/2020 challenge from rhesus macaques vaccinated with mRNA-1273 in a dose-reduction study. Single-cell transcriptomic profiling revealed a broad cellular landscape 48 hours after challenge, with distinct inflammatory signatures that correlated with viral RNA burden in the lower respiratory tract. These inflammatory signatures included phagocyte-restricted expression of chemokines, such as CXCL10 and CCL3, and the broad expression of IFN-induced genes, such as MX1, ISG15, and IFIT1. Induction of these inflammatory profiles was suppressed by prior mRNA-1273 vaccination in a dose-dependent manner and negatively correlated with prechallenge serum and lung antibody titers against SARS-CoV-2 spike. These observations were replicated and validated in a second independent macaque challenge study using the B.1.351/Beta variant of SARS-CoV-2. These data support a model wherein vaccine-elicited antibody responses restrict viral replication following SARS-CoV-2 exposure, including limiting viral dissemination to the lower respiratory tract and infection-mediated inflammation and pathogenesis.
Project description:We are in the midst of a pandemic caused by the novel severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), which causes the coronavirus disease 2019 (COVID-19). SARS-CoV-2 has caused more than two million deaths after one year of the pandemic. The world is experiencing a deep economic recession. Safe and effective vaccines are needed to prevent further morbidity and mortality. Vaccine candidates against COVID-19 have been developed at an unprecedented speed, with more than 200 vaccine candidates currently under investigation. Among those, 20 candidates have entered the clinical Phase 3 to evaluate efficacy, and three have been approved by the European Medicines Agency. The aim of immunization is to act against infection, disease and/or transmission. However, the measurement of vaccine efficacy is challenging, as efficacy trials need to include large cohorts with verum and placebo cohorts. In the future, this will be even more challenging as further vaccine candidates will receive approval, an increasing number of humans will receive vaccinations and incidence might decrease. To evaluate novel and second-generation vaccine candidates, randomized placebo-controlled trials might not be appropriate anymore. Correlates of protection (CoP) could be an important tool to evaluate novel vaccine candidates, but vaccine-induced CoP have not been clearly defined for SARS-CoV-2 vaccines. In this review, we report on immunogenicity against natural SARS-CoV-2 infection, vaccine-induced immune responses and discuss immunological markers that can be linked to protection. By discussing the immunogenicity and efficacy of forerunner vaccines, we aim to give a comprehensive overview of possible efficacy measures and CoP.
Project description:The ongoing COVID-19 pandemic, caused by infection with SARS-CoV-2, is having a dramatic and deleterious impact on health services and the global economy. Grim public health statistics highlight the need for vaccines that can rapidly confer protection after a single dose and be manufactured using components suitable for scale-up and efficient distribution. In response, we have rapidly developed repRNA-CoV2S, a stable and highly immunogenic vaccine candidate comprised of an RNA replicon formulated with a novel Lipid InOrganic Nanoparticle (LION) designed to enhance vaccine stability, delivery and immunogenicity. We show that intramuscular injection of LION/repRNA-CoV2S elicits robust anti-SARS-CoV-2 spike protein IgG antibody isotypes indicative of a Type 1 T helper response as well as potent T cell responses in mice. Importantly, a single-dose administration in nonhuman primates elicited antibody responses that potently neutralized SARS-CoV-2. These data support further development of LION/repRNA-CoV2S as a vaccine candidate for prophylactic protection from SARS-CoV-2 infection.
Project description:As of 2021 November 29, booster vaccination against SARS-CoV-2 infection has been recommended for all individuals aged 18 years and older in the United States. A key reason for this recommendation is the expectation that a booster vaccine dose can alleviate observed waning of vaccine effectiveness (VE). Although initial reports of booster effectiveness have been positive, the level of protection from booster vaccination is unclear. We conducted two studies to assess the impact of booster vaccination, with BNT162b2 or mRNA-1273, on the incidence of SARS-CoV-2 infection between August and December 2021. We first compared SARS-CoV-2 infection incidence in cohorts of 3-dose vaccine recipients to incidence in matched cohorts of 2-dose vaccine recipients (cohort size = 24,539 for BNT162b2 and 14,004 for mRNA-1273). Additionally, we applied a test-negative study design to compare the level of protection against symptomatic infection in 3-dose recipients to that observed in recent 2-dose primary vaccine series recipients. The 3-dose recipients experienced a significantly lower incidence rate of SARS-CoV-2 infection than the matched 2-dose cohorts (BNT162b2 Incidence Rate Ratio: 0.11, 95% CI: 0.09 to 0.13 and mRNA-1273 IRR: 0.11, 95% CI: 0.08 to 0.15). Results from the test-negative study showed the third vaccine dose mitigated waning of VE, with the risk of symptomatic infection in 3-dose recipients being comparable to that observed 7 to 73 days after the primary vaccine series. These results show that 3-dose vaccine regimens with BNT162b2 or mRNA-1273 are effective at reducing SARS-CoV-2 infection and support the widespread administration of booster vaccine doses.
Project description:The best assay or marker to define mRNA-1273 vaccine-induced antibodies as a correlate of protection (CoP) is unclear. In the COVE trial, participants received two doses of the mRNA-1273 COVID-19 vaccine or placebo. We previously assessed IgG binding antibodies to the spike protein (spike IgG) or receptor binding domain (RBD IgG) and pseudovirus neutralizing antibody 50 or 80% inhibitory dilution titer measured on day 29 or day 57, as correlates of risk (CoRs) and CoPs against symptomatic COVID-19 over 4 months after dose. Here, we assessed a new marker, live virus 50% microneutralization titer (LV-MN50), and compared and combined markers in multivariable analyses. LV-MN50 was an inverse CoR, with a hazard ratio of 0.39 (95% confidence interval, 0.19 to 0.83) at day 29 and 0.51 (95% confidence interval, 0.25 to 1.04) at day 57 per 10-fold increase. In multivariable analyses, pseudovirus neutralization titers and anti-spike binding antibodies performed best as CoRs; combining antibody markers did not improve correlates. Pseudovirus neutralization titer was the strongest independent correlate in a multivariable model. Overall, these results supported pseudovirus neutralizing and binding antibody assays as CoRs and CoPs, with the live virus assay as a weaker correlate in this sample set. Day 29 markers performed as well as day 57 markers as CoPs, which could accelerate immunogenicity and immunobridging studies.
Project description:BackgroundThe incidence of coronavirus disease 2019 (Covid-19) among adolescents between 12 and 17 years of age was approximately 900 per 100,000 population from April 1 through June 11, 2021. The safety, immunogenicity, and efficacy of the mRNA-1273 vaccine in adolescents are unknown.MethodsIn this ongoing phase 2-3, placebo-controlled trial, we randomly assigned healthy adolescents (12 to 17 years of age) in a 2:1 ratio to receive two injections of the mRNA-1273 vaccine (100 μg in each) or placebo, administered 28 days apart. The primary objectives were evaluation of the safety of mRNA-1273 in adolescents and the noninferiority of the immune response in adolescents as compared with that in young adults (18 to 25 years of age) in a phase 3 trial. Secondary objectives included the efficacy of mRNA-1273 in preventing Covid-19 or asymptomatic severe acute respiratory syndrome coronavirus 2 infection.ResultsA total of 3732 participants were randomly assigned to receive mRNA-1273 (2489 participants) or placebo (1243 participants). In the mRNA-1273 group, the most common solicited adverse reactions after the first or second injections were injection-site pain (in 93.1% and 92.4%, respectively), headache (in 44.6% and 70.2%, respectively), and fatigue (in 47.9% and 67.8%, respectively); in the placebo group, the most common solicited adverse reactions after the first or second injections were injection-site pain (in 34.8% or 30.3%, respectively), headache (in 38.5% and 30.2%, respectively), and fatigue (in 36.6% and 28.9%, respectively). No serious adverse events related to mRNA-1273 or placebo were noted. The geometric mean titer ratio of pseudovirus neutralizing antibody titers in adolescents relative to young adults was 1.08 (95% confidence interval [CI], 0.94 to 1.24), and the absolute difference in serologic response was 0.2 percentage points (95% CI, -1.8 to 2.4), which met the noninferiority criterion. No cases of Covid-19 with an onset of 14 days after the second injection were reported in the mRNA-1273 group, and four cases occurred in the placebo group.ConclusionsThe mRNA-1273 vaccine had an acceptable safety profile in adolescents. The immune response was similar to that in young adults, and the vaccine was efficacious in preventing Covid-19. (Funded by Moderna and the Biomedical Advanced Research and Development Authority; Teen COVE ClinicalTrials.gov number, NCT04649151.).