Project description:Umbilical cord blood (UCB) has been shown to be a suitable source of haematopoietic stem cells (HSCs) for haematopoietic reconstitution. An increase in the number of UCB transplants indicates an expansion of utility in a broad spectrum of disease conditions. Along with the advantages, UCB also has limitations, and hence several investigators are working to further optimize UCB for this use. Beyond haematopoietic transplantation, additional potential applications of UCB include immunotherapy, tissue engineering and regenerative medicine. UCB banking has improved with time largely due to involvement of professional organizations and their published standards. However, accreditation of these organizations remains voluntary, and in India three of ten banks are public with the remaining being private. Only one public and one private bank are American Association of Blood Banks (AABB) accredited in India. Government agencies need to provide regulatory and safety oversight, which is lacking in serveral countries. Public policy regarding UCB is in its infancy throughout most of the world. Ethical issues, including access to UCB banking and use as therapy for diseases other than haematological and metabolic disorders are in the early phase of trials and remain speculative.
Project description:AbstractPneumoconiosis refers to a spectrum of pulmonary diseases caused by inhalation of mineral dust, usually as the result of certain occupations. The main pathological features include chronic pulmonary inflammation and progressive pulmonary fibrosis, which can eventually lead to death caused by respiratory and/or heart failure. Pneumoconiosis is widespread globally, seriously threatening global public health. Its high incidence and mortality lie in improper occupational protection, and in the lack of early diagnostic methods and effective treatments. This article reviews the epidemiology, safeguard procedures, diagnosis, and treatment of pneumoconiosis, and summarizes recent research advances and future research prospects.
Project description:Congenital human cytomegalovirus (HCMV) infection can result in severe and permanent neurological injury in newborns, and vaccine development is accordingly a major public health priority. HCMV can also cause disease in solid organ transplant (SOT) and hematopoietic stem-cell transplant (HSCT) recipients, and a vaccine would be valuable in prevention of viremia and end-organ disease in these populations. Currently there is no licensed HCMV vaccine, but progress toward this goal has been made in recent clinical trials. A recombinant HCMV glycoprotein B (gB) vaccine has been shown to have some efficacy in prevention of infection in young women and adolescents, and has provided benefit to HCMV-seronegative SOT recipients. Similarly, DNA vaccines based on gB and the immunodominant T-cell target, pp65 (ppUL83), have been shown to reduce viremia in HSCT patients. This review provides an overview of HCMV vaccine candidates in various stages of development, as well as an update on the current status of ongoing clinical trials. Protective correlates of vaccine-induced immunity may be different for pregnant woman and transplant patients. As more knowledge emerges about correlates of protection, the ultimate licensure of HCMV vaccines may reflect the uniqueness of the target populations being immunized.
Project description:The location of Ecuador-an equatorial nation-favors the multiplication and dispersal of the Leptospira genus both on the Pacific Coast and in the Amazon tropical ecoregions. Nevertheless, leptospirosis epidemiology has not been fully addressed, even though the disease has been recognized as a significant public health problem in the country. The purpose of this literature review is to update knowledge on the epidemiology and geographical distribution of Leptospira spp. and leptospirosis in Ecuador to target future research and develop a national control strategy. A retrospective literature search using five international, regional, and national databases on Leptospira and leptospirosis including humans, animals, and environmental isolations of the bacteria and the disease incidence in Ecuador published between 1919 and 2022 (103 years) with no restriction on language or publication date was performed. We found and analyzed 47 publications including 22 of humans, 19 of animals, and two of the environments; three of these covered more than one of these topics, and one covered all three (i.e., One Health). Most (60%) of the studies were conducted in the Coastal ecoregion. Twenty-four (51%) were published in international journals, and 27 (57%) were in Spanish. A total of 7342 human and 6314 other animal cases were studied. Leptospirosis was a frequent cause of acute undifferentiated febrile illness in the Coast and Amazon and was associated with rainfall. All three major clusters of Leptospira-pathogenic, intermediate, and saprophytic-were identified from both healthy and febrile humans, the environment, and animals; moreover, nine species and 29 serovars were recorded over the three Ecuadorian ecoregions. Leptospira infections were diagnosed in livestock, companion, and wild animals from the Amazon and the Coast regions along with sea lions from the Galápagos Islands. Microscopic-agglutination test was the diagnostic tool most widely used. Three reviews covering national data on outpatients and inpatients determined the varied annual incidence and mortality rate, with males being more commonly affected. No human cases have been reported in the Galápagos Islands. Genomic sequences of three pathogenic Leptospira were reported. No studies on clinical ground, antibiotic resistance, or treatment were reported, nor were control programs or clinical-practice guidelines found. The published literature demonstrated that leptospirosis was and still is an endemic disease with active transmission in the four geoclimatic regions of Ecuador including the Galápagos Islands. Animal infections, distributed in mainland and insular Ecuador, pose a significant health risk for humans. Nationwide epidemiological surveys-encouraging more research on the fauna and environment with appropriate sampling design on risk factors for human and animal leptospirosis, Leptospira genotyping, increased laboratory capability, and readily available official data-are required to improve our understanding of transmission patterns and to develop effective national intervention strategies with the intention of applying One Health approaches.
Project description:Lung cancer is the leading cause of cancer death worldwide, making it an attractive disease for chemoprevention. Although avoidance of tobacco use and smoking cessation will have the greatest impact on lung cancer development, chemoprevention could prove to be very effective, particularly in former smokers. Chemoprevention is the use of agents to reverse or inhibit carcinogenesis and has been successfully applied to other common malignancies. Despite prior studies in lung cancer chemoprevention failing to identify effective agents, we now have the ability to identify high-risk populations, and our understanding of lung tumour and premalignant biology continues to advance. There are distinct histological lesions that can be reproducibly graded as precursors of non-small-cell lung cancer and similar precursor lesions exist for adenocarcinoma. These premalignant lesions are being targeted by chemopreventive agents in current trials and will continue to be studied in the future. In addition, biomarkers that predict risk and response to targeted agents are being investigated and validated. In this Review, we discuss the principles of chemoprevention, data from preclinical models, completed clinical trials and observational studies, and describe new treatments for novel targeted pathways and future chemopreventive efforts.
Project description:Iron overload is becoming an increasing problem as haemoglobinopathy patients gain greater access to good medical care and as therapies for myelodysplastic syndromes improve. Therapeutic options for iron chelation therapy have increased and many patients now receive combination therapies. However, optimal utilization of iron chelation therapy requires knowledge not only of the total body iron burden but the relative iron distribution among the different organs. The physiological basis for extrahepatic iron deposition is presented in order to help identify patients at highest risk for cardiac and endocrine complications. This manuscript reviews the current state of the art for monitoring global iron overload status as well as its compartmentalization. Plasma markers, computerized tomography, liver biopsy, magnetic susceptibility devices and magnetic resonance imaging (MRI) techniques are all discussed but MRI has come to dominate clinical practice. The potential impact of recent pancreatic and pituitary MRI studies on clinical practice are discussed as well as other works-in-progress. Clinical protocols are derived from experience in haemoglobinopathies but may provide useful guiding principles for other iron overload disorders, such as myelodysplastic syndromes.
Project description:COVID-19, a highly transmissible pandemic disease, is affecting millions of lives around the world. Severely infected patients show acute respiratory distress symptoms. Sustainable management strategies are required to save lives of the infected people and further preventing spread of the virus. Diagnosis, treatment, and vaccination development initiatives are already exhibited from the scientific community to fight against this virus. In this review, we primarily discuss the management strategies including prevention of spread, prophylaxis, vaccinations, and treatment for COVID-19. Further, analysis of vaccine development status and performance are also briefly discussed. Global socioeconomic impact of COVID-19 is also analyzed as part of this review.
Project description:The placenta is a temporary organ that is discarded after birth and is one of the most promising sources of various cells and tissues for use in regenerative medicine and tissue engineering, both in experimental and clinical settings. The placenta has unique, intrinsic features because it plays many roles during gestation: it is formed by cells from two individuals (mother and fetus), contributes to the development and growth of an allogeneic fetus, and has two independent and interacting circulatory systems. Different stem and progenitor cell types can be isolated from the different perinatal tissues making them particularly interesting candidates for use in cell therapy and regenerative medicine. The primary source of perinatal stem cells is cord blood. Cord blood has been a well-known source of hematopoietic stem/progenitor cells since 1974. Biobanked cord blood has been used to treat different hematological and immunological disorders for over 30 years. Other perinatal tissues that are routinely discarded as medical waste contain non-hematopoietic cells with potential therapeutic value. Indeed, in advanced perinatal cell therapy trials, mesenchymal stromal cells are the most commonly used. Here, we review one by one the different perinatal tissues and the different perinatal stem cells isolated with their phenotypical characteristics and the preclinical uses of these cells in numerous pathologies. An overview of clinical applications of perinatal derived cells is also described with special emphasis on the clinical trials being carried out to treat COVID19 pneumonia. Furthermore, we describe the use of new technologies in the field of perinatal stem cells and the future directions and challenges of this fascinating and rapidly progressing field of perinatal cells and regenerative medicine.
Project description:Introduction: Coronavirus disease 2019 (COVID-19), a respiratory illness caused by novel severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), had its first detection in December 2019 in Wuhan (China) and spread across the world. In March 2020, the World Health Organization (WHO) declared COVID-19 a pandemic disease. The utilization of prompt and accurate molecular diagnosis of SARS-CoV-2 virus, isolating the infected patients, and treating them are the keys to managing this unprecedented pandemic. International travel acted as a catalyst for the widespread transmission of the virus.Areas covered: This review discusses phenotype, structural, and molecular evolution of recognition elements and primers, its detection in the laboratory, and at point of care. Further, market analysis of commercial products and their performance are also evaluated, providing new ways to confront the ongoing global public health emergency.Expert commentary: The outbreak for COVID-19 created mammoth chaos in the healthcare sector, and still, day by day, new epicenters for the outbreak are being reported. Emphasis should be placed on developing more effective, rapid, and early diagnostic devices. The testing laboratories should invest more in clinically relevant multiplexed and scalable detection tools to fight against a pandemic like this where massive demand for testing exists.
Project description:Hepatocellular carcinoma (HCC) is the most prevalent primary liver cancer with poor prognosis. Surgery, chemotherapy, and radiofrequency ablation are three conventional therapeutic options that will help only a limited percentage of HCC patients. Cancer immunotherapy has achieved dramatic advances in recent years and provides new opportunities to treat HCC. However, HCC has various etiologies and can evade the immune system through multiple mechanisms. With the rapid development of genetic engineering and synthetic biology, a variety of novel immunotherapies have been employed to treat advanced HCC, including immune checkpoint inhibitors, adoptive cell therapy, engineered cytokines, and therapeutic cancer vaccines. In this review, we summarize the current landscape and research progress of different immunotherapy strategies in the treatment of HCC. The challenges and opportunities of this research field are also discussed.