Unknown

Dataset Information

0

SARS-CoV-2 serology across scales: a framework for unbiased seroprevalence estimation incorporating antibody kinetics and epidemic recency.


ABSTRACT: Serosurveys are a key resource for measuring SARS-CoV-2 cumulative incidence. A growing body of evidence suggests that asymptomatic and mild infections (together making up over 95% of all infections) are associated with lower antibody titers than severe infections. Antibody levels also peak a few weeks after infection and decay gradually. We developed a statistical approach to produce adjusted estimates of seroprevalence from raw serosurvey results that account for these sources of spectrum bias. We incorporate data on antibody responses on multiple assays from a post-infection longitudinal cohort, along with epidemic time series to account for the timing of a serosurvey relative to how recently individuals may have been infected. We applied this method to produce adjusted seroprevalence estimates from five large-scale SARS-CoV-2 serosurveys across different settings and study designs. We identify substantial differences between reported and adjusted estimates of over two-fold in the results of some surveys, and provide a tool for practitioners to generate adjusted estimates with pre-set or custom parameter values. While unprecedented efforts have been launched to generate SARS-CoV-2 seroprevalence estimates over this past year, interpretation of results from these studies requires properly accounting for both population-level epidemiologic context and individual-level immune dynamics.

SUBMITTER: Takahashi S 

PROVIDER: S-EPMC8452112 | biostudies-literature |

REPOSITORIES: biostudies-literature

Similar Datasets

| S-EPMC10472487 | biostudies-literature
| S-EPMC9835171 | biostudies-literature
| S-EPMC3063680 | biostudies-other
| S-EPMC5400386 | biostudies-literature
| S-EPMC4633052 | biostudies-literature
| S-EPMC6940506 | biostudies-literature
| S-EPMC7038669 | biostudies-literature
| S-EPMC4247275 | biostudies-literature
| S-EPMC7533746 | biostudies-literature
| S-EPMC9727941 | biostudies-literature