Project description:Echocardiographic imaging is crucial for patient management during cardiotoxic cancer therapy. Left ventricular ejection fraction is the most commonly used parameter for identifying left ventricular dysfunction. However, it lacks sensitivity to detect subclinical changes in cardiac function due to cardiotoxic treatment. Global longitudinal strain (GLS) is the best studied strain parameter with established diagnostic and prognostic value. Multiple studies have demonstrated changes in GLS as an early marker of cardiotoxicity. This document serves as a primer to help clinicians in the acquisition and interpretation of strain in cardio-oncology. Cases with embedded videos illustrate a step-by-step approach to obtaining GLS measurements and common pitfalls to avoid. The document includes a concise summary of the indications of GLS in cardio-oncology and its role in guiding oncological therapy. Practical approaches on how to implement strain in the echo laboratory with guidance on training and quality assurance are also discussed.
Project description:BackgroundChemotherapy induced cardio-toxicity has been recognized as a serious side effect since the first introduction to anthracyclines (ANT). Cardio-toxicity among patients with breast cancer is well studied but the impact on patients with sarcoma is limited, even though they are exposed to higher ANT doses. The commonly used term for cardio-toxicity is cancer therapeutics related cardiac dysfunction (CTRCD), defined as a left ventricular ejection fraction (LVEF) reduction of > 10%, to a value below 53%. The aim of our study was to estimate the prevalence of CTRCD in patients diagnosed with sarcoma and to describe the baseline risk factors and echocardiography parameters among that population.MethodsData were collected as part of the Israel Cardio-Oncology Registry (ICOR), enrolling all patients evaluated in the cardio-oncology clinic at our institution. The registry was approved by the local ethics committee and is registered in clinicaltrials.gov (Identifier: NCT02818517). All sarcoma patients were enrolled and divided into two groups - CTRCD group vs. non-CTRCD group.ResultsAmong 43 consecutive patients, 6 (14%) developed CTRCD. Baseline cardiac risk factors were more frequent among the non-CTRCD group. Elevated left ventricular end systolic diameter and reduced Global Longitudinal Strain were observed among the CTRCD group. During follow-up, 2 (33%) patients died in the CTRCD group vs. 3 (8.1%) patients in the non-CTRCD group.ConclusionsCTRCD is an important concern among patients with sarcoma, regardless of baseline risk factors. Echocardiography parameters may provide an early diagnosis of cardio-toxicity.
Project description:Heart disease and cancer are the leading causes of death in older adults. Many first-line cancer treatments have the potential for cardiotoxicity. Age-related risk factors, pre-existing cardiac disease, and a high prevalence of comorbidities are reasons for increased cardiotoxicity in older adults. Concerns regarding cardiotoxicity may lead to frailty bias and undertreatment, resulting in suboptimal outcomes. There is an urgent need for geriatric-specific evidence and guidelines to help tailor care for this vulnerable group. A multi-disciplinary approach based on close collaboration between oncologists, cardiologists, and geriatricians, among other specialist clinicians is essential.
Project description:The genomic predisposition to oncology-drug-induced cardiovascular toxicity has been postulated for many decades. Only recently has it become possible to experimentally validate this hypothesis via the use of patient-specific human-induced pluripotent stem cells (hiPSCs) and suitably powered genome-wide association studies (GWAS). Identifying the individual single nucleotide polymorphisms (SNPs) responsible for the susceptibility to toxicity from a specific drug is a daunting task as this precludes the use of one of the most powerful tools in genomics: comparing phenotypes to close relatives, as these are highly unlikely to have been treated with the same drug. Great strides have been made through the use of candidate gene association studies (CGAS) and increasingly large GWAS studies, as well as in vivo whole-organism studies to further our mechanistic understanding of this toxicity. The hiPSC model is a powerful technology to build on this work and identify and validate causal variants in mechanistic pathways through directed genomic editing such as CRISPR. The causative variants identified through these studies can then be implemented clinically to identify those likely to experience cardiovascular toxicity and guide treatment options. Additionally, targets identified through hiPSC studies can inform future drug development. Through careful phenotypic characterization, identification of genomic variants that contribute to gene function and expression, and genomic editing to verify mechanistic pathways, hiPSC technology is a critical tool for drug discovery and the realization of precision medicine in cardio-oncology.
Project description:With 5-year survival of children with cancer exceeding 80% in developed countries, premature cardiovascular disease is now a major cause of early morbidity and mortality. In addition to the acute and chronic cardiotoxic effects of anthracyclines, related chemotherapeutics, and radiation, a growing number of new molecular targeted agents may also have detrimental effects on the cardiovascular system. Survivors of childhood cancer also may have earlier development of conventional cardiovascular risk factors such as hypertension, dyslipidaemia, and diabetes, which further increase their risk of serious cardiovascular disease. This review will examine the epidemiology of acute and chronic cardiotoxicity relevant to paediatric cancer patients, including genetic risk factors. We will also provide an overview of current screening recommendations, including the evidence regarding both imaging (e.g. echocardiography and magnetic resonance imaging) and blood-based biomarkers. Various primary and secondary prevention strategies will also be discussed, primarily in relation to anthracycline-related cardiomyopathy. Finally, we review the available evidence related to the management of systolic and diastolic dysfunction in paediatric cancer patients and childhood cancer survivors.
Project description:BackgroundThe relative new subspecialty 'cardio-oncology' was established to meet the growing demand for an interdisciplinary approach to the management of cancer therapy-related cardiovascular adverse events. In recent years, specialised cardio-oncology services have been implemented worldwide, which all strive to improve the cardiovascular health of cancer patients. However, limited data are currently available on the outcomes and experiences of these specialised services, and optimal strategies for cardio-oncological care have not been established.AimThe ONCOR registry has been created for prospective data collection and evaluation of cardio-oncological care in daily practice.MethodsDutch hospitals using a standardised cardio-oncology care pathway are included in this national, multicentre, observational cohort study. All patients visiting these cardio-oncology services are eligible for study inclusion. Data collection at baseline consists of the (planned) cancer treatment and the cardiovascular risk profile, which are used to estimate the cardiotoxic risk. Information regarding invasive and noninvasive tests is collected during the time patients receive cardio-oncological care. Outcome data consist of the incidence of cardiovascular complications and major adverse cardiac events, and the impact of these events on the oncological treatment.DiscussionOutcomes of the ONCOR registry may aid in gaining more insight into the incidence of cancer therapy-related cardiovascular complications. The registry facilitates research on mechanisms of cardiovascular complications and on diagnostic, prognostic and therapeutic strategies. In addition, it provides a platform for future (interventional) studies. Centres with cardio-oncology services that are interested in contributing to the ONCOR registry are hereby invited to participate.
Project description:IntroductionBasal cardiovascular risk assessment in cardio-oncology is essential. Integrating clinical information, ECG and transthoracic echocardiogram can identify concealed inherited cardiomyopathies (ICMPs) with potential added risk of cardiotoxicity. We aimed to evaluate the impact of our Cardio-Oncology Unit design in detecting concealed ICMPs.MethodsWe carried out a retrospective study of all consecutive breast cancer patients referred to the Cardio-Oncology Unit for cardiac evaluation (2020-2022). ICMPs diagnosis was provided according to ESC guidelines and underwent genetic testing. ICMPs prevalence in this cohort was compared to the highest and lowest frequency reported in the general population.ResultsAmong 591 breast cancer patients, we identified eight patients with ICMPs: one arrhythmogenic cardiomyopathy (ACM), three familial non-ischemic dilated cardiomyopathy (DCM), three hypertrophic cardiomyopathy (HCM) and one left ventricular non-compaction cardiomyopathy (LVNC), which has now been reclassified as non-dilated left ventricular cardiomyopathy. The number of ICMPs identified was within the expected range (neither overdiagnosed nor overlooked): ACM 0.0017 vs. 0.0002-0.001 (p 0.01-0.593); DCM 0.0051 vs. 0.002-0.0051 (p 0.094-0.676); HCM 0.005 vs. 0.0002-0.002 (p < 0.001-0.099); LVCN 0.0017 vs. 0.00014-0.013 (p 0.011-0.015). Genetic testing identified a pathogenic FLNC variant and two pathogenic TTN variants.ConclusionOpportunistic screening of ICMPs during basal cardiovascular risk assessment can identify high-risk cancer patients who benefit from personalized medicine and enables extension of prevention strategies to all available relatives at concealed high cardiovascular risk.
Project description:Cardio-oncology is a subspecialty of cardiology. It was created to address oncology data indicating that newly developed drugs for cancer treatment were having unanticipated cardiac side effects. Cardio-oncology designs primary and secondary risk strategies through surveillance as well as interventions to reduce cardiovascular risk (CVR), prevent cardiotoxicities, and manage the side effects that may occur. Rather than discuss in detail the cardiotoxicities of specific therapies or radiation, this review article will explore the interplay of cancer, cancer treatment, and CVR. It will examine the link between CVR and cancer risk, define mechanisms associated with cardiotoxicity, and describe screening and surveillance for patients undergoing cancer treatment. Finally, effective preventative and management strategies used to reduce the incidence of cardiotoxicities in those receiving chemotherapeutics or radiation will be presented.
Project description:Overlapping commonalities between coronavirus disease of 2019 (COVID-19) and cardio-oncology regarding cardiovascular toxicities (CVT), pathophysiology, and pharmacology are special topics emerging during the pandemic. In this perspective, we consider an array of CVT common to both COVID-19 and cardio-oncology, including cardiomyopathy, ischemia, conduction abnormalities, myopericarditis, and right ventricular (RV) failure. We also emphasize the higher risk of severe COVID-19 illness in patients with cardiovascular disease (CVD) or its risk factors or cancer. We explore commonalities in the underlying pathophysiology observed in COVID-19 and cardio-oncology, including inflammation, cytokine release, the renin-angiotensin-aldosterone-system, coagulopathy, microthrombosis, and endothelial dysfunction. In addition, we examine common pharmacologic management strategies that have been elucidated for CVT from COVID-19 and various cancer therapies. The use of corticosteroids, as well as antibodies and inhibitors of various molecules mediating inflammation and cytokine release syndrome, are discussed. The impact of angiotensin converting enzyme inhibitors (ACEIs) and angiotensin receptor blockers (ARBs) is also addressed, since these drugs are used in cardio-oncology and have received considerable attention during the COVID-19 pandemic, since the culprit virus enters human cells via the angiotensin converting enzyme 2 (ACE2) receptor. There are therefore several areas of overlap, similarity, and interaction in the toxicity, pathophysiology, and pharmacology profiles in COVID-19 and cardio-oncology syndromes. Learning more about either will likely provide some level of insight into both. We discuss each of these topics in this viewpoint, as well as what we foresee as evolving future directions to consider in cardio-oncology during the pandemic and beyond. Finally, we highlight commonalities in health disparities in COVID-19 and cardio-oncology and encourage continued development and implementation of innovative solutions to improve equity in health and healing.