Project description:BackgroundCardiac sarcoidosis (CS) and arrhythmogenic right ventricular cardiomyopathy (ARVC) are rare causes of ventricular arrhythmias and are associated with sudden cardiac death. Differentiation between both is important for proper management.Case summaryWe present a 56-year-old man with sudden cardiac arrest and was diagnosed to have ARVC based on cardiac magnetic resonance imaging (MRI). He developed gradually worsening shortness of breath over the next 1 year. CS was unmasked after a cardiac positron emission tomography (PET). Patient was treated with methotrexate. A repeat cardiac PET scan showed improvement.DiscussionThe distinction between ARVC and CS is challenging. Both these entities have a patchy involvement and can have similar presentations. ARVC has a predominant right heart involvement. It is diagnosed with the help of an MRI, which shows regional right ventricular wall motion abnormality. These findings can have an overlap with CS. It is important to note that, even though sarcoidosis is a pathologic diagnosis, cardiac biopsy is rarely done owing to its patchy involvement. Cardiac PET scan has a high sensitivity and specificity to diagnose this entity. Once diagnosis is made, patients should be treated with immunosuppressants and should be closely followed. Repeat imaging should be considered at intervals to monitor disease progression. This case highlights the importance of multimodality imaging and tissue diagnosis to unmask the diagnosis of CS, a treatable infiltrative disorder which shares features with a potentially untreatable ARVC.
Project description:To investigate whether phospholamban gene (PLN) mutations underlie patients diagnosed with either arrhythmogenic right ventricular cardiomyopathy (ARVC) or idiopathic dilated cardiomyopathy (DCM).We screened a cohort of 97 ARVC and 257 DCM unrelated index patients for PLN mutations and evaluated their clinical characteristics. PLN mutation R14del was identified in 12 (12 %) ARVC patients and in 39 (15 %) DCM patients. Haplotype analysis revealed a common founder, estimated to be between 575 and 825 years old. A low voltage electrocardiogram was present in 46 % of R14del carriers. Compared with R14del- DCM patients, R14del+ DCM patients more often demonstrated appropriate implantable cardioverter defibrillator discharge (47 % vs. 10 % , P < 0.001), cardiac transplantation (18 % vs. 2 % , P < 0.001), and a family history for sudden cardiac death (SCD) at < 50 years (36 % vs. 16 % , P = 0.007). We observed a similar pattern in the ARVC patients although this was not statistically significant. The average age of 26 family members who died of SCD was 37.7 years. Immunohistochemistry in available myocardial samples revealed absent/depressed plakoglobin levels at intercalated disks in five of seven (71 %) R14del+ ARVC samples, but in only one of nine (11 %) R14del+ DCM samples (P = 0.03).The PLN R14del founder mutation is present in a substantial number of patients clinically diagnosed with DCM or ARVC. R14del+ patients diagnosed with DCM showed an arrhythmogenic phenotype, and SCD at young age can be the presenting symptom. These findings support the concept of 'arrhythmogenic cardiomyopathy'.
Project description:BackgroundMutations in desmoplakin (DSP), the primary force transducer between cardiac desmosomes and intermediate filaments, cause an arrhythmogenic form of cardiomyopathy that has been variably associated with arrhythmogenic right ventricular cardiomyopathy. Clinical correlates of DSP cardiomyopathy have been limited to small case series.MethodsClinical and genetic data were collected on 107 patients with pathogenic DSP mutations and 81 patients with pathogenic plakophilin 2 (PKP2) mutations as a comparison cohort. A composite outcome of severe ventricular arrhythmia was assessed.ResultsDSP and PKP2 cohorts included similar proportions of probands (41% versus 42%) and patients with truncating mutations (98% versus 100%). Left ventricular (LV) predominant cardiomyopathy was exclusively present among patients with DSP (55% versus 0% for PKP2, P<0.001), whereas right ventricular cardiomyopathy was present in only 14% of patients with DSP versus 40% for PKP2 (P<0.001). Arrhythmogenic right ventricular cardiomyopathy diagnostic criteria had poor sensitivity for DSP cardiomyopathy. LV late gadolinium enhancement was present in a primarily subepicardial distribution in 40% of patients with DSP (23/57 with magnetic resonance images). LV late gadolinium enhancement occurred with normal LV systolic function in 35% (8/23) of patients with DSP. Episodes of acute myocardial injury (chest pain with troponin elevation and normal coronary angiography) occurred in 15% of patients with DSP and were strongly associated with LV late gadolinium enhancement (90%), even in cases of acute myocardial injury with normal ventricular function (4/5, 80% with late gadolinium enhancement). In 4 DSP cases with 18F-fluorodeoxyglucose positron emission tomography scans, acute LV myocardial injury was associated with myocardial inflammation misdiagnosed initially as cardiac sarcoidosis or myocarditis. Left ventricle ejection fraction <55% was strongly associated with severe ventricular arrhythmias for DSP cases (P<0.001, sensitivity 85%, specificity 53%). Right ventricular ejection fraction <45% was associated with severe arrhythmias for PKP2 cases (P<0.001) but was poorly associated for DSP cases (P=0.8). Frequent premature ventricular contractions were common among patients with severe arrhythmias for both DSP (80%) and PKP2 (91%) groups (P=non-significant).ConclusionsDSP cardiomyopathy is a distinct form of arrhythmogenic cardiomyopathy characterized by episodic myocardial injury, left ventricular fibrosis that precedes systolic dysfunction, and a high incidence of ventricular arrhythmias. A genotype-specific approach for diagnosis and risk stratification should be used.
Project description:AimsArrhythmogenic right ventricular cardiomyopathy (ARVC) causes ventricular arrhythmias (VAs) and sudden cardiac death (SCD). In 2019, a risk prediction model that estimates the 5-year risk of incident VAs in ARVC was developed (ARVCrisk.com). This study aimed to externally validate this prediction model in a large international multicentre cohort and to compare its performance with the risk factor approach recommended for implantable cardioverter-defibrillator (ICD) use by published guidelines and expert consensus.Methods and resultsIn a retrospective cohort of 429 individuals from 29 centres in North America and Europe, 103 (24%) experienced sustained VA during a median follow-up of 5.02 (2.05-7.90) years following diagnosis of ARVC. External validation yielded good discrimination [C-index of 0.70 (95% confidence interval-CI 0.65-0.75)] and calibration slope of 1.01 (95% CI 0.99-1.03). Compared with the three published consensus-based decision algorithms for ICD use in ARVC (Heart Rhythm Society consensus on arrhythmogenic cardiomyopathy, International Task Force consensus statement on the treatment of ARVC, and American Heart Association guidelines for VA and SCD), the risk calculator performed better with a superior net clinical benefit below risk threshold of 35%.ConclusionUsing a large independent cohort of patients, this study shows that the ARVC risk model provides good prognostic information and outperforms other published decision algorithms for ICD use. These findings support the use of the model to facilitate shared decision making regarding ICD implantation in the primary prevention of SCD in ARVC.
Project description:BackgroundArrhythmogenic cardiomyopathy (ACM) is an inherited cardiac disease characterized by fibrofatty replacement of ventricular myocardium. Ventricular arrhythmia and sudden cardiac death (SCD) are the main clinical manifestations. ACM was previously called arrhythmogenic right ventricular cardiomyopathy/dysplasia (ARVC/D). However, recent studies have shown that this disease is not limited to the right ventricle; biventricular involvement occurs in 50% of ACM patients. The left-dominant subtype was subsequently identified, which supported the adoption of the broader term "ACM". The clinical literature includes more extensive reports on ARVC, but reports on arrhythmogenic left ventricular cardiomyopathy (ALVC), which is likely to be underrecognized, are limited.Case descriptionIn this report, we describe a case of secondary syncope in a patient with ALVC who developed right bundle branch block with ventricular tachycardia (RBBB-VT), with VT originating in the left ventricle (LV). Cardiac magnetic resonance (CMR) revealed significant enlargement of the LV, with LV dysfunction. Late gadolinium enhancement (LGE) and fat sequencing revealed that most of the free wall of the LV was replaced by fibrofatty tissue.ConclusionsThis report could help improve the understanding of this rare disease, and its management. CMR plays a key role in the diagnosis of ACM.
Project description:IntroductionGrowing evidence from animal models indicates that the myocardium hosts a population of B cells that play a role in the development of cardiomyopathy. However, there is minimal data on human myocardial B cells in the context of cardiomyopathy.MethodsWe integrated single-cell and single-nuclei datasets from 45 healthy human hearts, 70 hearts with dilated cardiomyopathy (DCM), and 8 hearts with Arrhythmogenic Right Ventricular Cardiomyopathy (ARVC). Interactions between B cells and other cell types were investigated using the CellChat Package. Differential gene expression analysis comparing B cells across conditions was performed using DESeq2. Pathway analysis was performed using Ingenuity, KEGG, and GO pathways analysis.ResultsWe identified 1,100 B cells, including naive B cells and plasma cells. B cells showed an extensive network of interactions within the healthy myocardium that included outgoing signaling to macrophages, T cells, endothelial cells, and pericytes, and incoming signaling from endothelial cells, pericytes, and fibroblasts. This niche relied on ECM-receptor, contact, and paracrine interaction; and changed significantly in the context of cardiomyopathy, displaying disease-specific features. Differential gene expression analysis showed that in the context of DCM both naive and plasma B cells upregulated several pathways related to immune activation, including upregulation of oxidative phosphorylation, upregulation of leukocyte extravasation, and, in naive B cells, antigen presentation.DiscussionThe human myocardium contains naive B cells and plasma cells, integrated into a diverse and dynamic niche that has distinctive features in healthy myocardium, DCM, and ARVC. Naive myocardial-associated B cells likely contribute to the pathogenesis of human DCM.