Project description:BackgroundCardiac sarcoidosis (CS) and arrhythmogenic right ventricular cardiomyopathy (ARVC) are rare causes of ventricular arrhythmias and are associated with sudden cardiac death. Differentiation between both is important for proper management.Case summaryWe present a 56-year-old man with sudden cardiac arrest and was diagnosed to have ARVC based on cardiac magnetic resonance imaging (MRI). He developed gradually worsening shortness of breath over the next 1 year. CS was unmasked after a cardiac positron emission tomography (PET). Patient was treated with methotrexate. A repeat cardiac PET scan showed improvement.DiscussionThe distinction between ARVC and CS is challenging. Both these entities have a patchy involvement and can have similar presentations. ARVC has a predominant right heart involvement. It is diagnosed with the help of an MRI, which shows regional right ventricular wall motion abnormality. These findings can have an overlap with CS. It is important to note that, even though sarcoidosis is a pathologic diagnosis, cardiac biopsy is rarely done owing to its patchy involvement. Cardiac PET scan has a high sensitivity and specificity to diagnose this entity. Once diagnosis is made, patients should be treated with immunosuppressants and should be closely followed. Repeat imaging should be considered at intervals to monitor disease progression. This case highlights the importance of multimodality imaging and tissue diagnosis to unmask the diagnosis of CS, a treatable infiltrative disorder which shares features with a potentially untreatable ARVC.
Project description:To investigate whether phospholamban gene (PLN) mutations underlie patients diagnosed with either arrhythmogenic right ventricular cardiomyopathy (ARVC) or idiopathic dilated cardiomyopathy (DCM).We screened a cohort of 97 ARVC and 257 DCM unrelated index patients for PLN mutations and evaluated their clinical characteristics. PLN mutation R14del was identified in 12 (12 %) ARVC patients and in 39 (15 %) DCM patients. Haplotype analysis revealed a common founder, estimated to be between 575 and 825 years old. A low voltage electrocardiogram was present in 46 % of R14del carriers. Compared with R14del- DCM patients, R14del+ DCM patients more often demonstrated appropriate implantable cardioverter defibrillator discharge (47 % vs. 10 % , P < 0.001), cardiac transplantation (18 % vs. 2 % , P < 0.001), and a family history for sudden cardiac death (SCD) at < 50 years (36 % vs. 16 % , P = 0.007). We observed a similar pattern in the ARVC patients although this was not statistically significant. The average age of 26 family members who died of SCD was 37.7 years. Immunohistochemistry in available myocardial samples revealed absent/depressed plakoglobin levels at intercalated disks in five of seven (71 %) R14del+ ARVC samples, but in only one of nine (11 %) R14del+ DCM samples (P = 0.03).The PLN R14del founder mutation is present in a substantial number of patients clinically diagnosed with DCM or ARVC. R14del+ patients diagnosed with DCM showed an arrhythmogenic phenotype, and SCD at young age can be the presenting symptom. These findings support the concept of 'arrhythmogenic cardiomyopathy'.
Project description:BackgroundMutations in desmoplakin (DSP), the primary force transducer between cardiac desmosomes and intermediate filaments, cause an arrhythmogenic form of cardiomyopathy that has been variably associated with arrhythmogenic right ventricular cardiomyopathy. Clinical correlates of DSP cardiomyopathy have been limited to small case series.MethodsClinical and genetic data were collected on 107 patients with pathogenic DSP mutations and 81 patients with pathogenic plakophilin 2 (PKP2) mutations as a comparison cohort. A composite outcome of severe ventricular arrhythmia was assessed.ResultsDSP and PKP2 cohorts included similar proportions of probands (41% versus 42%) and patients with truncating mutations (98% versus 100%). Left ventricular (LV) predominant cardiomyopathy was exclusively present among patients with DSP (55% versus 0% for PKP2, P<0.001), whereas right ventricular cardiomyopathy was present in only 14% of patients with DSP versus 40% for PKP2 (P<0.001). Arrhythmogenic right ventricular cardiomyopathy diagnostic criteria had poor sensitivity for DSP cardiomyopathy. LV late gadolinium enhancement was present in a primarily subepicardial distribution in 40% of patients with DSP (23/57 with magnetic resonance images). LV late gadolinium enhancement occurred with normal LV systolic function in 35% (8/23) of patients with DSP. Episodes of acute myocardial injury (chest pain with troponin elevation and normal coronary angiography) occurred in 15% of patients with DSP and were strongly associated with LV late gadolinium enhancement (90%), even in cases of acute myocardial injury with normal ventricular function (4/5, 80% with late gadolinium enhancement). In 4 DSP cases with 18F-fluorodeoxyglucose positron emission tomography scans, acute LV myocardial injury was associated with myocardial inflammation misdiagnosed initially as cardiac sarcoidosis or myocarditis. Left ventricle ejection fraction <55% was strongly associated with severe ventricular arrhythmias for DSP cases (P<0.001, sensitivity 85%, specificity 53%). Right ventricular ejection fraction <45% was associated with severe arrhythmias for PKP2 cases (P<0.001) but was poorly associated for DSP cases (P=0.8). Frequent premature ventricular contractions were common among patients with severe arrhythmias for both DSP (80%) and PKP2 (91%) groups (P=non-significant).ConclusionsDSP cardiomyopathy is a distinct form of arrhythmogenic cardiomyopathy characterized by episodic myocardial injury, left ventricular fibrosis that precedes systolic dysfunction, and a high incidence of ventricular arrhythmias. A genotype-specific approach for diagnosis and risk stratification should be used.
Project description:AimsArrhythmogenic right ventricular cardiomyopathy (ARVC) causes ventricular arrhythmias (VAs) and sudden cardiac death (SCD). In 2019, a risk prediction model that estimates the 5-year risk of incident VAs in ARVC was developed (ARVCrisk.com). This study aimed to externally validate this prediction model in a large international multicentre cohort and to compare its performance with the risk factor approach recommended for implantable cardioverter-defibrillator (ICD) use by published guidelines and expert consensus.Methods and resultsIn a retrospective cohort of 429 individuals from 29 centres in North America and Europe, 103 (24%) experienced sustained VA during a median follow-up of 5.02 (2.05-7.90) years following diagnosis of ARVC. External validation yielded good discrimination [C-index of 0.70 (95% confidence interval-CI 0.65-0.75)] and calibration slope of 1.01 (95% CI 0.99-1.03). Compared with the three published consensus-based decision algorithms for ICD use in ARVC (Heart Rhythm Society consensus on arrhythmogenic cardiomyopathy, International Task Force consensus statement on the treatment of ARVC, and American Heart Association guidelines for VA and SCD), the risk calculator performed better with a superior net clinical benefit below risk threshold of 35%.ConclusionUsing a large independent cohort of patients, this study shows that the ARVC risk model provides good prognostic information and outperforms other published decision algorithms for ICD use. These findings support the use of the model to facilitate shared decision making regarding ICD implantation in the primary prevention of SCD in ARVC.
Project description:Arrhythmogenic right ventricular cardiomyopathy (ARVC) is an inherited cardiomyopathy characterized by ventricular arrhythmias and an increased risk of sudden cardiac death. Although structural abnormalities of the right ventricle predominate, it is well recognized that left ventricular involvement is common, particularly in advanced disease, and that left-dominant forms occur. The pathological characteristic of ARVC is myocyte loss with fibrofatty replacement. Since the first detailed clinical description of the disorder in 1982, significant advances have been made in understanding this disease. Once the diagnosis of ARVC is established, the single most important clinical decision is whether a particular patient's sudden cardiac death risk is sufficient to justify placement of an implantable cardioverter-defibrillator. The importance of this decision reflects the fact that ARVC is a common cause of sudden death in young people and that sudden death may be the first manifestation of the disease. This decision is particularly important because these are often young patients who are expected to live for many years. Although an implantable cardioverter-defibrillator can save lives in individuals with this disease, it is also well recognized that implantable cardioverter-defibrillator therapy is associated with both short- and long-term complications. Decisions about the placement of an implantable cardioverter-defibrillator are based on an estimate of a patient's risk of sudden cardiac death, as well as their preferences and values. The primary purpose of this article is to provide a review of the literature that concerns risk stratification in patients with ARVC and to place this literature in the framework of the 3 authors' considerable lifetime experiences in caring for patients with ARVC. The most important parameters to consider when determining arrhythmic risk include electric instability, including the frequency of premature ventricular contractions and sustained ventricular arrhythmia; proband status; extent of structural disease; cardiac syncope; male sex; the presence of multiple mutations or a mutation in TMEM43; and the patient's willingness to restrict exercise and to eliminate participation in competitive or endurance exercise.
Project description:Arrhythmogenic right ventricular cardiomyopathy (ARVC) is an inherited heart muscle disease characterized by fibrofatty replacement of the myocardium and ventricular arrhythmias, associated with mutations in the desmosomal genes. Only a missense mutation in the DES gene coding for desmin, the intermediate filament protein expressed by cardiac and skeletal muscle cells, has been recently associated with ARVC. We screened 91 ARVC index cases (53 negative for mutations in desmosomal genes and an additional 38 carrying desmosomal gene mutations) for DES mutations. Two rare missense variants were identified. The heterozygous p.K241E substitution was detected in 1 patient affected with a severe form of ARVC who also carried the p.T816RfsX10 mutation in plakophilin-2 gene. This DES substitution, showing an allele frequency of <0.01 in the control population, is predicted to cause an intolerant amino acid change in a highly conserved protein domain. Thus, it can be considered a rare variant with a possible modifier effect on the phenotypic expression of the concomitant mutation. The previously known p.A213V substitution was identified in 1 patient with ARVC who was negative for mutations in the desmosomal genes. Because a greater prevalence of p.A213V has been reported in patients with heart dilation than in control subjects, the hypothesis that this rare variant could have an unfavorable effect on cardiac remodeling cannot be ruled out. In conclusion, our data help to establish that, in the absence of skeletal muscle involvement suggestive of a desminopathy, the probability of DES mutations in ARVC is very low. These findings have important implications in the mutation screening strategy for patients with ARVC.
Project description:Arrhythmogenic right ventricular cardiomyopathy (ARVC) is a heart muscle disease in which the pathological substrate is a fibro-fatty replacement of the right ventricular myocardium. The major clinical features are different types of arrhythmias with a left branch block pattern. ARVC shows autosomal dominant inheritance with incomplete penetrance. Recessive forms were also described, although in association with skin disorders.Ten genetic loci have been discovered so far and mutations were reported in five different genes. ARVD1 was associated with regulatory mutations of transforming growth factor beta-3 (TGFβ3), whereas ARVD2, characterized by effort-induced polymorphic arrhythmias, was associated with mutations in cardiac ryanodine receptor-2 (RYR2). All other mutations identified to date have been detected in genes encoding desmosomal proteins: plakoglobin (JUP) which causes Naxos disease (a recessive form of ARVC associated with palmoplantar keratosis and woolly hair); desmoplakin (DSP) which causes the autosomal dominant ARVD8 and plakophilin-2 (PKP2) involved in ARVD9. Desmosomes are important cell-to-cell adhesion junctions predominantly found in epidermis and heart; they are believed to couple cytoskeletal elements to plasma membrane in cell-to-cell or cell-to-substrate adhesions.