Investigating Flagella-Driven Motility in Escherichia coli by Applying Three Established Techniques in a Series.
Ontology highlight
ABSTRACT: Motility is crucial to the survival and success of many bacterial species. Many methodologies exist to exploit motility to understand signaling pathways, to elucidate the function and assembly of flagellar parts, and to examine and understand patterns of movement. Here we demonstrate a combination of three of these methodologies. Motility in soft agar is the oldest, offering a strong selection for isolating gain-of-function suppressor mutations in motility-impaired strains, where motility is restored through a second mutation. The cell-tethering technique, first employed to demonstrate the rotary nature of the flagellar motor, can be used to assess the impact of signaling effectors on the motor speed and its ability to switch rotational direction. The "border-crossing" assay is more recent, where swimming bacteria can be primed to transition into moving collectively as a swarm. In combination, these protocols represent a systematic and powerful approach to identifying components of the motility machinery, and to characterizing their role in different facets of swimming and swarming. They can be easily adapted to study motility in other bacterial species.
SUBMITTER: Partridge JD
PROVIDER: S-EPMC8453667 | biostudies-literature |
REPOSITORIES: biostudies-literature
ACCESS DATA