Unknown

Dataset Information

0

Enhanced sucrose fermentation by introduction of heterologous sucrose transporter and invertase into Clostridium beijerinckii for acetone-butanol-ethanol production.


ABSTRACT: A heterologous pathway for sucrose transport and metabolism was introduced into Clostridium beijerinckii to improve sucrose use for n-butanol production. The combined expression of StSUT1, encoding a sucrose transporter from potato (Solanum tuberosum), and SUC2, encoding a sucrose invertase from Saccharomyces cerevisiae, remarkably enhanced n-butanol production. With sucrose, sugarcane molasses and sugarcane juice as substrates, the C. beijerinckii strain harbouring StSUT1 and SUC2 increased acetone-butanol-ethanol production by 38.7%, 22.3% and 52.8%, respectively, compared with the wild-type strain. This is the first report to demonstrate enhanced sucrose fermentation due to the heterologous expression of a sucrose transporter and invertase in Clostridium. The metabolic engineering strategy used in this study can be widely applied in other microorganisms to enhance the production of high-value compounds from sucrose-based biomass.

SUBMITTER: Lin L 

PROVIDER: S-EPMC8456130 | biostudies-literature |

REPOSITORIES: biostudies-literature

Similar Datasets

| S-EPMC3681630 | biostudies-literature
| S-EPMC3536099 | biostudies-literature
| S-EPMC4500237 | biostudies-literature
| S-EPMC5359496 | biostudies-literature
| S-EPMC7322341 | biostudies-literature
| S-EPMC4972440 | biostudies-literature
| S-EPMC3918155 | biostudies-literature
2009-06-02 | GSE12365 | GEO
| S-EPMC3294493 | biostudies-literature
2009-06-02 | GSE12359 | GEO