Ontology highlight
ABSTRACT: Purpose
The pathological process of atopic dermatitis (AD) progressing into other types of allergic diseases such as asthma and allergic rhinitis during the first several years of life is often referred to as the atopic march. Although the phenomenon of atopic march has been recognized for decades, how asthma stems from AD is still not fully understood, confounding a universal strategy to effectively protect people from the atopic march.Methods
We established experimental atopic march mice by first inducing allergic dermatitis with 0.5% fluorescein isothiocyante (FITC) applied to the skin, followed by an ovalbumin (OVA) airway challenge. In addition, by examining serum immunoglobulin (Ig) concentrations, airway cytokines, the levels of oxidative stress markers, histopathological changes in lung tissue and airway hyperresponsiveness (AHR), we were able to validate the successful establishment of the model. Furthermore, by detecting the attenuating effects of melatonin (MT) and the levels of oxidative stress in the atopic march mice, we explored the potential molecular mechanisms involved in the development of atopic march.Results
By successfully establishing an experimental atopic march mouse model, we were able to demonstrate that overproduction of oxidative stress in the lung significantly up-regulated the activation of nuclear factor-κB (NF-κB) signaling pathways causing thymic stromal lymphopoietin (TSLP) release, which further promotes the development of atopic march.Conclusions
To mitigate the development of the atopic march, antioxidants such as MT may be imperative to inhibit NF-κB activation in the lung, especially after the onset of AD.
SUBMITTER: Liu X
PROVIDER: S-EPMC8458693 | biostudies-literature |
REPOSITORIES: biostudies-literature