An integrated three-tier trust management framework in mobile edge computing using fuzzy logic.
Ontology highlight
ABSTRACT: Mobile edge computing (MEC) is introduced as part of edge computing paradigm, that exploit cloud computing resources, at a nearer premises to service users. Cloud service users often search for cloud service providers to meet their computational demands. Due to the lack of previous experience between cloud service providers and users, users hold several doubts related to their data security and privacy, job completion and processing performance efficiency of service providers. This paper presents an integrated three-tier trust management framework that evaluates cloud service providers in three main domains: Tier I, which evaluates service provider compliance to the agreed upon service level agreement; Tier II, which computes the processing performance of a service provider based on its number of successful processes; and Tier III, which measures the violations committed by a service provider, per computational interval, during its processing in the MEC network. The three-tier evaluation is performed during Phase I computation. In Phase II, a service provider total trust value and status are gained through the integration of the three tiers using the developed overall trust fuzzy inference system (FIS). The simulation results of Phase I show the service provider trust value in terms of service level agreement compliance, processing performance and measurement of violations independently. This disseminates service provider's points of failure, which enables a service provider to enhance its future performance for the evaluated domains. The Phase II results show the overall trust value and status per service provider after integrating the three tiers using overall trust FIS. The proposed model is distinguished among other models by evaluating different parameters for a service provider.
SUBMITTER: B M Mansour M
PROVIDER: S-EPMC8459791 | biostudies-literature |
REPOSITORIES: biostudies-literature
ACCESS DATA