Project description:G-quadruplex (or G4) structures are non-canonical DNA structures that form in guanine-rich sequences and threaten genome stability when not properly resolved. G4 unwinding occurs during S phase via an unknown mechanism. Using Xenopus egg extracts, we define a three-step G4 unwinding mechanism that acts during DNA replication. First, the replicative helicase (CMG) stalls at a leading strand G4 structure. Second, the DHX36 helicase mediates the bypass of the CMG past the intact G4 structure, which allows approach of the leading strand to the G4. Third, G4 structure unwinding by the FANCJ helicase enables the DNA polymerase to synthesize past the G4 motif. A G4 on the lagging strand template does not stall CMG, but still requires active DNA replication for unwinding. DHX36 and FANCJ have partially redundant roles, conferring robustness to this pathway. Our data reveal a novel genome maintenance pathway that promotes faithful G4 replication thereby avoiding genome instability.
Project description:Regions of the genome with the potential to form secondary DNA structures pose a frequent and significant impediment to DNA replication and must be actively managed in order to preserve genetic and epigenetic integrity. How the replisome detects and responds to secondary structures is poorly understood. Here, we show that a core component of the fork protection complex in the eukaryotic replisome, Timeless, harbours in its C-terminal region a previously unappreciated DNA-binding domain that exhibits specific binding to G-quadruplex (G4) DNA structures. We show that this domain contributes to maintaining processive replication through G4-forming sequences, and exhibits partial redundancy with an adjacent PARP-binding domain. Further, this function of Timeless requires interaction with and activity of the helicase DDX11. Loss of both Timeless and DDX11 causes epigenetic instability at G4-forming sequences and DNA damage. Our findings indicate that Timeless contributes to the ability of the replisome to sense replication-hindering G4 formation and ensures the prompt resolution of these structures by DDX11 to maintain processive DNA synthesis.
Project description:We have characterized HsCdc6, a human protein homologous to the budding yeast Cdc6p that is essential for DNA replication. We show that, unlike Cdc6p, the levels of HsCdc6 protein remain constant throughout the cell cycle in human cells. However, phosphorylation of HsCdc6 is regulated during the cell cycle. HsCdc6 is an excellent substrate for Cdk2 in vitro and is phosphorylated in vivo at three sites (Ser-54, Ser-74, and Ser-106) that are phosphorylated by Cdk2 in vitro, strongly suggesting that HsCdc6 is an in vivo Cdk substrate. HsCdc6 is nuclear in G1, but translocates to the cytoplasm at the start of S phase via Crm1-dependent export. An HsCdc6A1A2A3 mutant, which mimics unphosphorylated HsCdc6, is exclusively nuclear, and its expression inhibits initiation of DNA replication. An HsCdc6E1E2E3 mutant, which mimics phosphorylated HsCdc6, is exclusively cytoplasmic and is not associated with the chromatin/nuclear matrix fraction. Based on these results, we propose that phosphorylation of HsCdc6 by Cdks regulates DNA replication of at least two steps: first, by promoting initiation of DNA replication and, second, through nuclear exclusion preventing DNA rereplication.
Project description:G-quadruplexes represent unique roadblocks to DNA replication, which tends to stall at these secondary structures. Although G-quadruplexes can be found throughout the genome, telomeres, due to their G-richness, are particularly predisposed to forming these structures and thus represent difficult-to-replicate regions. Here, we demonstrate that exonuclease 1 (EXO1) plays a key role in the resolution of, and replication through, telomeric G-quadruplexes. When replication forks encounter G-quadruplexes, EXO1 resects the nascent DNA proximal to these structures to facilitate fork progression and faithful replication. In the absence of EXO1, forks accumulate at stabilized G-quadruplexes and ultimately collapse. These collapsed forks are preferentially repaired via error-prone end joining as depletion of EXO1 diverts repair away from error-free homology-dependent repair. Such aberrant repair leads to increased genomic instability, which is exacerbated at chromosome termini in the form of dysfunction and telomere loss.
Project description:The DNA sliding clamp proliferating cell nuclear antigen (PCNA) is an essential co-factor for many eukaryotic DNA metabolic enzymes. PCNA is loaded around DNA by the ATP-dependent clamp loader replication factor C (RFC), which acts at single-stranded (ss)/double-stranded DNA (dsDNA) junctions harboring a recessed 3' end (3' ss/dsDNA junctions) and at DNA nicks. To illuminate the loading mechanism we have investigated the structure of RFC:PCNA bound to ATPγS and 3' ss/dsDNA junctions or nicked DNA using cryogenic electron microscopy. Unexpectedly, we observe open and closed PCNA conformations in the RFC:PCNA:DNA complex, revealing that PCNA can adopt an open, planar conformation that allows direct insertion of dsDNA, and raising the question of whether PCNA ring closure is mechanistically coupled to ATP hydrolysis. By resolving multiple DNA-bound states of RFC:PCNA we observe that partial melting facilitates lateral insertion into the central channel formed by RFC:PCNA. We also resolve the Rfc1 N-terminal domain and demonstrate that its single BRCT domain participates in coordinating DNA prior to insertion into the central RFC channel, which promotes PCNA loading on the lagging strand of replication forks in vitro. Combined, our data suggest a comprehensive and fundamentally revised model for the RFC-catalyzed loading of PCNA onto DNA.
Project description:G-quadruplexes are four-stranded nucleic acid structures whose biological functions remain poorly understood. In the yeast S. cerevisiae, we report that G-quadruplexes form and, if not properly processed, pose a specific challenge to replication. We show that the G-quadruplex-prone CEB1 tandem array is tolerated when inserted near ARS305 replication origin in wild-type cells but is very frequently destabilized upon treatment with the potent Phen-DC(3) G-quadruplex ligand, or in the absence of the G-quadruplex-unwinding Pif1 helicase, only when the G-rich strand is the template of leading-strand replication. The orientation-dependent instability is associated with the formation of Rad51-Rad52-dependent X-shaped intermediates during replication detected by two-dimensional (2D) gels, and relies on the presence of intact G-quadruplex motifs in CEB1 and on the activity of ARS305. The asymmetrical behaviour of G-quadruplex prone sequences during replication has implications for their evolutionary dynamics within genomes, including the maintenance of G-rich telomeres.
Project description:Hairpin telomeres of bacterial linear chromosomes are generated by a DNA cutting-rejoining enzyme protelomerase. Protelomerase resolves a concatenated dimer of chromosomes as the last step of chromosome replication, converting a palindromic DNA sequence at the junctions between chromosomes into covalently closed hairpins. The mechanism by which protelomerase transforms a duplex DNA substrate into the hairpin telomeres remains largely unknown. We report here a series of crystal structures of the protelomerase TelA bound to DNA that represent distinct stages along the reaction pathway. The structures suggest that TelA converts a linear duplex substrate into hairpin turns via a transient strand-refolding intermediate that involves DNA-base flipping and wobble base-pairs. The extremely compact di-nucleotide hairpin structure of the product is fully stabilized by TelA prior to strand ligation, which drives the reaction to completion. The enzyme-catalyzed, multistep strand refolding is a novel mechanism in DNA rearrangement reactions.
Project description:The generation of terminally differentiated cell lineages during organogenesis requires multiple, coordinated cell fate choice steps. However, this process has not been clearly delineated, especially in complex solid organs such as the pancreas. Here, we performed single-cell RNA-sequencing in pancreatic cells sorted from multiple genetically modified reporter mouse strains at embryonic stages E9.5-E17.5. We deciphered the developmental trajectories and regulatory strategies of the exocrine and endocrine pancreatic lineages as well as intermediate progenitor populations along the developmental pathways. Notably, we discovered previously undefined programs representing the earliest events in islet α- and β-cell lineage allocation as well as the developmental pathway of the "first wave" of α-cell generation. Furthermore, we demonstrated that repressing ERK pathway activity is essential for inducing both α- and β-lineage differentiation. This study provides key insights into the regulatory mechanisms underlying cell fate choice and stepwise cell fate commitment and can be used as a resource to guide the induction of functional islet lineage cells from stem cells in vitro.
Project description:The human telomere region is known to contain guanine-rich repeats and form a guanine-quadruplex (G4) structure. As telomeres play a role in the regulation of cancer progression, ligands that specifically bind and stabilize G4 have potential therapeutic applications. However, as the human telomere sequence can form G4 with various topologies due to direct interaction by ligands and indirect interaction by the solution environment, it is of great interest to study the topology-dependent control of replication by ligands. In the present study, a DNA replication assay of a template with a human telomere G4 sequence in the presence of various ligands was performed. Cyclic naphthalene diimides (cNDI1 and cNDI2) efficiently increased the replication stall of the template DNA at G4 with an anti-parallel topology. This inhibition was stability-dependent and topology-selective, as the replication of templates with hybrid or parallel G4 structures was not affected by the cNDI and cNDI2. Moreover, the G4 ligand fisetin repressed replication with selectivity for anti-parallel and hybrid G4 structures without stabilization. Finally, the method used, referred to as quantitative study of topology-dependent replication (QSTR), was adopted to evaluate the correlation between the replication kinetics and the stability of G4. Compared to previous results obtained using a modified human telomere sequence, the relationship between the stability of G4 and the effect on the topology-dependent replication varied. Our results suggest that native human telomere G4 is more flexible than the modified sequence for interacting with ligands. These findings indicate that the modification of the human telomeric sequence forces G4 to rigidly form a specific structure of G4, which can restrict the change in topology-dependent replication by some ligands.
Project description:Condensin, a conserved member of the SMC protein family of ring-shaped multi-subunit protein complexes, is essential for structuring and compacting chromosomes. Despite its key role, its molecular mechanism has remained largely unknown. Here, we employ single-molecule magnetic tweezers to measure, in real time, the compaction of individual DNA molecules by the budding yeast condensin complex. We show that compaction can proceed in large steps, driving DNA molecules into a fully condensed state against forces of up to 2 pN. Compaction can be reversed by applying high forces or adding buffer of high ionic strength. While condensin can stably bind DNA in the absence of ATP, ATP hydrolysis by the SMC subunits is required for rendering the association salt insensitive and for the subsequent compaction process. Our results indicate that the condensin reaction cycle involves two distinct steps, where condensin first binds DNA through electrostatic interactions before using ATP hydrolysis to encircle the DNA topologically within its ring structure, which initiates DNA compaction. The finding that both binding modes are essential for its DNA compaction activity has important implications for understanding the mechanism of chromosome compaction.