Project description:PurposeTo investigate whether in vitro fertilization (IVF) and intracytoplasmic sperm injection (ICSI), influence the embryo's development and its quality using the mouse as a model.MethodsAssisted fertilization was performed using ICSI and IVF. Fluorescent beads were adhered to the fertilization cone or place of previous sperm injection in the natural mated (NM), IVF and ICSI embryos, respectively. Embryo examination was carried out at the two-cell and blastocyst stage to determine the position of fluorescent bead. Protein expression was detected by fluorescence immunocytochemical staining and confocal microscopic imaging of blastocysts.ResultsIVF and ICSI embryos developed at rates comparable to NM group. Embryos show similar expression patterns of two transcription factors, Oct4 and Cdx2. The most preferred place for spermatozoa attachment was the equatorial site of the egg, whether fertilization occurred in vitro or under natural conditions. We also link the sperm entry position (SEP) to embryo morphology and the number of cells at the blastocyst stage, with no influence of the method of fertilization.ConclusionsIVF and ICSI, do not compromise in vitro pre-implantation development. Additional data, related to sperm entry, could offer further criteria to predict embryos that will implant successfully. Based on embryo morphology, developmental rate and protein expression level of key transcription factors, our results support the view that ART techniques, such as IVF and ICSI, do not perturb embryonic development or quality.
Project description:Polyspermy is an important anomaly of fertilization in placental mammals, causing premature death of the embryo. It is especially frequent under in vitro conditions, complicating the successful generation of viable embryos. A block to polyspermy develops as a result of changes after sperm entry (i.e., cortical granule exocytosis). However, additional factors may play an important role in regulating polyspermy by acting on gametes before sperm-oocyte interaction. Most studies have used rodents as models, but ungulates may differ in mechanisms preventing polyspermy. We hypothesize that zona pellucida (ZP) changes during transit of the oocyte along the oviductal ampulla modulate the interaction with spermatozoa, contributing to the regulation of polyspermy. We report here that periovulatory oviductal fluid (OF) from sows and heifers increases (both, con- and heterospecifically) ZP resistance to digestion with pronase (a parameter commonly used to measure the block to polyspermy), changing from digestion times of approximately 1 min (pig) or 2 min (cattle) to 45 min (pig) or several hours (cattle). Exposure of oocytes to OF increases monospermy after in vitro fertilization in both species, and in pigs, sperm-ZP binding decreases. The resistance of OF-exposed oocytes to pronase was abolished by exposure to heparin-depleted medium; in a medium with heparin it was not altered. Proteomic analysis of the content released in the heparin-depleted medium after removal of OF-exposed oocytes allowed the isolation and identification of oviduct-specific glycoprotein. Thus, an oviduct-specific glycoprotein-heparin protein complex seems to be responsible for ZP changes in the oviduct before fertilization, affecting sperm binding and contributing to the regulation of polyspermy.
Project description:BackgroundWhen preparing for fertilization, oocytes undergo meiotic maturation during which structural changes occur in the endoplasmic reticulum (ER) that lead to a more efficient calcium response. During meiotic maturation and subsequent fertilization, the actin cytoskeleton also undergoes dramatic restructuring. We have recently observed that rearrangements of the actin cytoskeleton induced by actin-depolymerizing agents, or by actin-binding proteins, strongly modulate intracellular calcium (Ca2+) signals during the maturation process. However, the significance of the dynamic changes in F-actin within the fertilized egg has been largely unclear.Methodology/principal findingsWe have measured changes in intracellular Ca2+ signals and F-actin structures during fertilization. We also report the unexpected observation that the conventional antagonist of the InsP(3) receptor, heparin, hyperpolymerizes the cortical actin cytoskeleton in postmeiotic eggs. Using heparin and other pharmacological agents that either hypo- or hyperpolymerize the cortical actin, we demonstrate that nearly all aspects of the fertilization process are profoundly affected by the dynamic restructuring of the egg cortical actin cytoskeleton.Conclusions/significanceOur findings identify important roles for subplasmalemmal actin fibers in the process of sperm-egg interaction and in the subsequent events related to fertilization: the generation of Ca2+ signals, sperm penetration, cortical granule exocytosis, and the block to polyspermy.
Project description:Salpingitis is a common cause for subfertility and infertility both in humans and animals. However, the effects of salpingitis on tubal function and reproductive success are largely unknown. Therefore we set out to investigate the effects of inflammation on sperm and oocyte transport and gameto-maternal interaction in the oviduct using the bovine as a model. For this purpose, oviducts revealing mild (n?=?45), moderate (n?=?55) and severe (n?=?45) inflammation were obtained from cows immediately after slaughter and investigated by live cell imaging, histochemistry and scanning electron microscopy. Our studies showed that endometritis was always correlated with salpingitis. Moderate and severe inflammation caused a significant increase in the thickness of tubal folds (p?<?0.05). Severe inflammation was characterized by luminal accumulations of mucus and glycoproteins, increased apoptosis, loss of tight junctions and shedding of tubal epithelial cells. The mean ciliary beat frequency (CBF) in the ampulla was significantly reduced as compared to the controls (p?<?0.05). The higher the grade of inflammation, the lower was the CBF (p?<?0.001). In severe inflammation, spermatozoa were stuck in mucus resulting in decreased sperm motility. Our results imply that tubal inflammation impairs proper tubal function and leads to reduced sperm fertilizing capacity.
Project description:Building on our recent discovery of the zinc signature phenomenon present in boar, bull, and human spermatozoa, we have further characterized the role of zinc ions in the spermatozoa's pathway to fertilization. In boar, the zinc signature differed between the three major boar ejaculate fractions, the initial pre-rich, the sperm-rich, and the post-sperm-rich fraction. These differences set in the sperm ejaculatory sequence establish two major sperm cohorts with marked differences in their sperm capacitation progress. On the subcellular level, we show that the capacitation-induced Zn-ion efflux allows for sperm release from oviductal glycans as analyzed with the oviductal epithelium mimicking glycan binding assay. Sperm zinc efflux also activates zinc-containing enzymes and proteases involved in sperm penetration of the zona pellucida, such as the inner acrosomal membrane matrix metalloproteinase 2 (MMP2). Both MMP2 and the 26S proteasome showed severely reduced activity in the presence of zinc ions, through studies using by gel zymography and the fluorogenic substrates, respectively. In the context of the fertilization-induced oocyte zinc spark and the ensuing oocyte-issued polyspermy-blocking zinc shield, the inhibitory effect of zinc on sperm-borne enzymes may contribute to the fast block of polyspermy. Altogether, our findings establish a new paradigm on the role of zinc ions in sperm function and pave the way for the optimization of animal semen analysis, artificial insemination (AI), and human male-factor infertility diagnostics.
Project description:BackgroundFertilization is a prerequisite for successful human reproduction. The choice of clinical fertilization strategy is crucial and directly affects clinical outcomes. This study analyzes the most appropriate assisted reproductive technology (ART) strategy based on sperm parameters.MethodsSemen samples were divided into six groups based on semen progressive motility (PR) and semen density (SD): HMLD (high motility-low density) (PR ≥32% and sperm density <15×106/mL, n=60), HMID (high motility-intermediate density) (PR ≥32% and 15×106/mL ≤ SD <30×106/mL, n=106), HMHD (high motility-high density) (PR ≥32% and SD ≥30×106/mL, n=1,009), LMLD (low motility-low density) (PR <32% and SD <15×106/mL, n=99), LMID (low motility-intermediate density) (PR <32% and 15×106/mL ≤ SD <30×106/mL, n=77), and LMHD (low motility-high density) (PR <32% and SD ≥30×106/mL, n=164). We analyzed hyaluronic acid binding (HAB) assay and acrosin activity, along with fertilization, embryonic development, and pregnancy outcomes, to demonstrate the correlation of sperm parameters with fertilization function.ResultsIn the PR <32% groups, the rate of intracytoplasmic sperm injection (ICSI) treatment decreased with increasing sperm concentration. Specifically, approximately 10% of in vitro fertilization (IVF) treatment cycles required a rescue ICSI when sperm PR was <32% accompanied by SD ≥15×106/mL and PR ≥32% accompanied by SD <30×106/mL, which was significantly higher than HMHD group, P<0.001. Sperm acrosin activity and HAB ability were significantly higher in the groups with good sperm parameters, P<0.05.ConclusionsThe findings of this study suggest, fertilization ability of sperm is closely related to sperm motility and density. In clinical practice, IVF strategies should be refined based on male sperm parameters.
Project description:Before fertilization, sperm bind to epithelial cells of the oviduct isthmus to form a reservoir that regulates sperm viability and capacitation. The sperm reservoir maintains optimum fertility in species, like swine, in which semen deposition and ovulation may not be well synchronized. We demonstrated previously that porcine sperm bind to two oviductal glycan motifs, a biantennary 6-sialylated N-acetyllactosamine (bi-SiaLN) oligosaccharide and 3-O-sulfated Lewis X trisaccharide (suLeX). Here, we assessed the ability of these glycans to regulate sperm Ca2+ influx, capacitation and affect sperm lifespan. After 24 h, the viability of sperm bound to immobilized bi-SiaLN and suLeX was higher (46% and 41% respectively) compared to viability of free-swimming sperm (10-12%). Ca2+ is a central regulator of sperm function so we assessed whether oviduct glycans could affect the Ca2+ influx that occurs during capacitation. Using a fluorescent intracellular Ca2+ probe, we observed that both oviduct glycans suppressed the Ca2+ increase that occurs during capacitation. Thus, specific oviduct glycans can regulate intracellular Ca2+. Because the increase in intracellular Ca2+ was suppressed by oviduct glycans, we examined whether glycans affected capacitation, as determined by protein tyrosine phosphorylation and the ability to undergo a Ca2+ ionophore-induced acrosome reaction. We found no discernable suppression of capacitation in sperm bound to oviduct glycans. We also detected no effect of oviduct glycans on sperm motility during capacitation. In summary, LeX and bi-SiaLN glycan motifs found on oviduct oligosaccharides suppress the Ca2+ influx that occurs during capacitation and extend sperm lifespan but do not affect sperm capacitation or motility.
Project description:Fertilizing sperm are retained by adhesion to specific glycans on the epithelium of the oviduct forming a reservoir before sperm are released from the reservoir so fertilization can ensue. Capacitated sperm lose affinity for the oviduct epithelium but the components of capacitation that are important for sperm release are uncertain. One important correlate of capacitation is the development of hyperactivated motility. Hyperactivation is characterized by asymmetrical flagellar beating with high beat amplitude. We tested whether the development of full-type asymmetrical motility was sufficient to release sperm from immobilized oviduct glycans. Sperm hyperactivation was induced by four different compounds, a cell-permeable cAMP analog (cBiMPS), CatSper activators (4-aminopyridine and procaine), and an endogenous steroid (progesterone). Using standard analysis (CASA) and direct visualization with high-speed video microscopy, we first confirmed that all four compounds induced hyperactivation. Subsequently, sperm were allowed to bind to immobilized oviduct glycans, and compounds or vehicle controls were added. All compounds caused sperm release from immobilized glycans, demonstrating that hyperactivation was sufficient to release sperm from oviduct cells and immobilized glycans. Pharmacological inhibition of the non-genomic progesterone receptor and CatSper diminished sperm release from oviduct glycans. Inhibition of the proteolytic activities of the ubiquitin-proteasome system (UPS), implicated in the regulation of sperm capacitation, diminished sperm release in response to all hyperactivation inducers. In summary, induction of sperm hyperactivation was sufficient to induce sperm release from immobilized oviduct glycans and release was dependent on CatSper and the UPS.
Project description:After natural or artificial insemination, the spermatozoon starts a journey from the site of deposition to the place of fertilization. However, only a small subset of the spermatozoa deposited achieves their goal: to reach and fertilize the egg. Factors involved in controlling sperm transport and fertilization include the female reproductive tract environment, cell-cell interactions, gene expression, and phenotypic sperm traits. Some of the significant determinants of fertilization are known (i.e., motility or DNA status), but many sperm traits are still indecipherable. One example is the influence of sperm dimensions and shape upon transport within the female genital tract towards the oocyte. Biophysical associations between sperm size and motility may influence the progression of spermatozoa through the female reproductive tract, but uncertainties remain concerning how sperm morphology influences the fertilization process, and whether only the sperm dimensions per se are involved. Moreover, such explanations do not allow the possibility that the female tract is capable of distinguishing fertile spermatozoa on the basis of their morphology, as seems to be the case with biochemical, molecular, and genetic properties. This review focuses on the influence of sperm size and shape in evolution and their putative role in sperm transport and selection within the uterus and the ability to fertilize the oocyte.
Project description:Since the establishment of in vitro fertilization, it became evident that almost half of the couples failed to achieve fertilization and this phenomenon was attributed to a male gamete dysfunction. The adoption of assisted fertilization techniques particularly ICSI has been able to alleviate male factor infertility by granting the consistent ability of a viable spermatozoon to activate an oocyte. Single sperm injection, by pinpointing the beginning of fertilization, has been an invaluable tool in clarifying the different aspects of early fertilization and syngamy. However, even with ICSI some couples fail to fertilize due to ooplasmic dysmaturity in relation to the achieved nuclear maturation marked by the extrusion of the first polar body. More uncommon are cases where the spermatozoa partially or completely lack the specific oocyte activating factor. In this work, we review the most relevant aspects of fertilization and its failure through assisted reproductive technologies. Attempts at diagnosing and treating clinical fertilization failure are described.