Unknown

Dataset Information

0

Shape-Memory and Anisotropic Carbon Aerogel from Biomass and Graphene Oxide.


ABSTRACT: Biomass, as the most abundant and sustainable resource on the earth, has been regarded as an ideal carbon source to prepare various carbon materials. However, manufacturing shape-memory carbon aerogels with excellent compressibility and elasticity from biomass remains an open challenge. Herein, a cellulose-derived carbon aerogel with an anisotropic architecture is fabricated with the assistance of graphene oxide (GO) through a directional freeze-drying process and carbonization. The carbon aerogel displays excellent shape-memory performances, with high stress and height retentions of 93.6% and 95.5% after 1000 compression cycles, respectively. Moreover, the carbon aerogel can identify large ranges of compression strain (10-80%), and demonstrates excellent current stability during cyclic compression. The carbon aerogel can precisely capture a variety of biological signals in the human body, and thus can be used in wearable electronic devices.

SUBMITTER: Lin Z 

PROVIDER: S-EPMC8464720 | biostudies-literature |

REPOSITORIES: biostudies-literature

Similar Datasets

| S-EPMC4919543 | biostudies-other
| S-EPMC8623857 | biostudies-literature
| S-EPMC9043259 | biostudies-literature
| S-EPMC9050804 | biostudies-literature
| S-EPMC9057835 | biostudies-literature
| S-EPMC8596101 | biostudies-literature
| S-EPMC8006522 | biostudies-literature
| S-EPMC6356501 | biostudies-literature
| S-EPMC8134629 | biostudies-literature
| S-EPMC6073752 | biostudies-literature